1. 汽车运动学模型
1. 运动学模型
在后轴处,即(xr,yr)(x_r,y_r)(xr,yr)处,速度为
vr=x˙rcos(φ)+y˙rsin(φ)
v_r = \dot{x}_r cos(\varphi)+\dot{y}_rsin(\varphi)
vr=x˙rcos(φ)+y˙rsin(φ)
在沿车横向的约束条件为:
{x˙fsin(φ+δf)−y˙fcos(φ+δf)x˙rsin(φ)−y˙rcos(φ)
\left\{
\begin{aligned}
&\dot{x}_fsin(\varphi+\delta_f)-\dot{y}_f cos(\varphi+\delta_f) \\
&\dot{x}_rsin(\varphi)-\dot{y}_rcos(\varphi)
\end{aligned}
\right.
{x˙fsin(φ+δf)−y˙fcos(φ+δf)x˙rsin(φ)−y˙rcos(φ)
并且x方向和y方向速度与车纵向速度的关系为:
{x˙r=vrcos(φ)y˙r=vrsin(φ)
\left\{
\begin{aligned}
&\dot{x}_r=v_rcos(\varphi)\\
&\dot{y}_r=v_rsin(\varphi)
\end{aligned}
\right.
{x˙r=vrcos(φ)y˙r=vrsin(φ)
前后轮的关系为:
{x˙f=xr+lcos(φ)y˙f=yr+lsin(φ)
\left\{
\begin{aligned}
&\dot{x}_f=x_r+lcos(\varphi)\\
&\dot{y}_f=y_r+lsin(\varphi)
\end{aligned}
\right.
{x˙f=xr+lcos(φ)y˙f=yr+lsin(φ)
对上述关系求导得:
{x˙f=vrcos(φ)−ωlsin(φ)y˙f=vrsin(φ)+ωlcos(φ)
\left\{
\begin{aligned}
&\dot{x}_f=v_rcos(\varphi)-\omega lsin(\varphi)\\
&\dot{y}_f=v_rsin(\varphi)+\omega lcos(\varphi)
\end{aligned}
\right.
{x˙f=vrcos(φ)−ωlsin(φ)y˙f=vrsin(φ)+ωlcos(φ)
联立上面速度关系可得到:
sin(φ+δf)cos(φ+δf)=vrsin(φ+ωlcos(φ))vrcos(φ)−ωlsin(φ)
\frac{sin(\varphi+\delta_f)}{cos(\varphi+\delta_f)}=\frac{v_rsin(\varphi+\omega lcos(\varphi))}{v_rcos(\varphi)-\omega lsin(\varphi)}
cos(φ+δf)sin(φ+δf)=vrcos(φ)−ωlsin(φ)vrsin(φ+ωlcos(φ))
对上式展开,即得到:
ω=vrltan(δf)
\omega = \frac{v_r}{l}tan(\delta_f)
ω=lvrtan(δf)
即,我们得到如下非线性运动学模型:
[x˙ry˙rφ˙]=[cos(φ)sin(φ)tan(δf)l]vr
{
\left[ \begin{array}{ccc}
\dot{x}_r\\
\dot{y}_r\\
\dot{\varphi}
\end{array}
\right ]}={
\left[ \begin{array}{ccc}
cos(\varphi)\\
sin(\varphi)\\
\frac{tan(\delta_f)}{l}
\end{array}
\right ]}v_r
⎣⎡x˙ry˙rφ˙⎦⎤=⎣⎡cos(φ)sin(φ)ltan(δf)⎦⎤vr
其中,状态变量为 :
[xryrφ]T
{
\left[\begin{array}{ccc}
x_r & y_r &\varphi
\end{array}
\right ]}^{T}
[xryrφ]T
控制量为vr和δfv_r和\delta_fvr和δf
2. 非线性模型线性化
利用泰勒展开:
设参考系统为:
ξ˙r=f(ξr,ur)
\dot{\xi}_r=f(\xi_r,u_r)
ξ˙r=f(ξr,ur)
当前系统在参考系统点处展开得:
ξ˙=f(ξr,ur)+∂f∂ξ∣ξ=ξr,u=ur(ξ−ξr)+∂f∂u∣ξ=ξr,u=ur(u−ur)
\dot{\xi} = f(\xi_r,u_r)+\frac{\partial f}{\partial \xi}|_{\xi=\xi_r,u=u_r}(\xi-\xi_r)+\frac{\partial f}{\partial u}|_{\xi=\xi_r,u=u_r}(u-u_r)
ξ˙=f(ξr,ur)+∂ξ∂f∣ξ=ξr,u=ur(ξ−ξr)+∂u∂f∣ξ=ξr,u=ur(u−ur)
即我们对非线性模型进行一阶泰勒展开并离散化得到:
ξ~kin(k+1)=Akin(k)ξ~kin(k)+Bkin(k)u~kin(k)
\widetilde{\xi}_{kin}(k+1) = A_{kin}(k)\widetilde{\xi}_{kin}(k)+B_{kin}(k)\widetilde{u}_{kin}(k)
ξkin(k+1)=Akin(k)ξkin(k)+Bkin(k)ukin(k)
其中
ξ~kin(k)=[x−xry−yrφ−φr]Akin=[10−vrsin(φr)T01vrcos(φr)T001]Bkin=[cos(φr)T0sin(φr)T0tan(δf)TlvrTlcos2(δf)] \widetilde{\xi}_{kin}(k)= { \left[ \begin{array}{ccc} x-x_r\\ y-y_r\\ \varphi-\varphi_r \end{array} \right ]} A_{kin}= { \left[ \begin{array}{ccc} 1 & 0 & -v_rsin(\varphi_r)T\\ 0 & 1 & v_rcos(\varphi_r)T\\ 0 & 0 & 1 \end{array} \right ] } B_{kin}= { \left[ \begin{array}{ccc} cos(\varphi_r)T & 0 \\ sin(\varphi_r)T & 0\\ \frac{tan(\delta_f)T}{l} & \frac{v_rT}{lcos^{2}(\delta_f)} \end{array} \right ] } ξkin(k)=⎣⎡x−xry−yrφ−φr⎦⎤Akin=⎣⎡100010−vrsin(φr)Tvrcos(φr)T1⎦⎤Bkin=⎣⎡cos(φr)Tsin(φr)Tltan(δf)T00lcos2(δf)vrT⎦⎤