PyTorch实现简单的线性回归

本文详细介绍了使用PyTorch实现线性模型,包括数据准备、模型设计、MSE损失函数和SGD优化器的应用,以及训练过程和结果展示。通过实例演示了如何调整权重和偏置,并展示了训练结果和模型测试。最后,通过二维曲线图和三维散点图呈现了训练过程的损失变化和参数演变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实现步骤

1、准备数据

x_data = torch.tensor([[1.0],[2.0],[3.0]])
y_data = torch.tensor([[2.0],[4.0],[6.0]])

2、设计模型

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()
        self.linear = torch.nn.Linear(<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值