python机器学习基础笔记1之数组矩阵(cook book)

该博客主要围绕Python中矩阵相关操作展开,涵盖创建向量、矩阵、稀疏矩阵,对矩阵元素定位、描述,进行元素运算、求最值、均值方差等,还包括矩阵的转置、求秩、行列式、逆矩阵等操作,以及产生随机数值。

创建vector

# Load library
import numpy as np

# Create a vector as a row
vector_row = np.array([1, 2, 3])

# Create a vector as a column
vector_column = np.array([ [1],
						   [2],
					       [3] ])

创建 matrix

# Load library
import numpy as np

# Create a matrix
matrix = np.array([[1, 2],
				   [1, 2],
				   [1, 2]])


创建稀疏矩阵

# Load libraries
import numpy as np
from scipy import sparse

# Create a matrix
matrix = np.array([[0, 0],
				   [0, 1],
				   [3, 0]])
							 
# Create compressed sparse row (CSR) matrix
matrix_sparse = sparse.csr_matrix(matrix)

元素定位

# Load library
import numpy as np

# Create row vector
vector = np.array([1, 2, 3, 4, 5, 6])

# Create matrix
matrix = np.array([[1, 2, 3],
			       [4, 5, 6],
				   [7, 8, 9]])

# Select third element of vector
vector[2]

# Select second row, second column
matrix[1,1]

# Select all elements of a vector
vector[:]

# Select everything up to and including the third element
vector[:3]

# Select everything after the third element
vector[3:]

# Select the last element
vector[-1]

# Select the first two rows and all columns of a matrix

matrix[:2,:]

array([[1, 2, 3],
	   [4, 5, 6]])

# Select all rows and the second column
matrix[:,1:2]
array([[2],
	   [5],
       [8]])

描述矩阵

# View number of rows and columns
matrix.shape

# View number of elements (rows * columns)
matrix.size

# View number of dimensions
matrix.ndim

对元素进行运算

# Add 100 to all elements
matrix + 100
array([[101, 102, 103],
       [104, 105, 106],
       [107, 108, 109]])

最大最小值

# Load library
import numpy as np

# Create matrix
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
# Return maximum element
np.max(matrix)
9

# Return minimum element
np.min(matrix)
1

# Find maximum element in each column
np.max(matrix, axis=0)
array([7, 8, 9])

# Find maximum element in each row
np.max(matrix, axis=1)
array([3, 6, 9])

平均值,方差

np.mean(matrix)

# Return variance
np.var(matrix)

# Return standard deviation
np.std(matrix)

# Find the mean value in each column
np.mean(matrix, axis=0)
array([ 4., 5., 6.])

重塑array

# Load library
import numpy as np

# Create 4x3 matrix
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9],
                   [10, 11, 12]])

# Reshape matrix into 2x6 matrix
matrix.reshape(2, 6)

array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12]])

matrix.size
12

'''
One useful argument in reshape is -1, which effectively means “as many as needed,”
so reshape(-1, 1) means one row and as many columns as needed:
'''
matrix.reshape(1, -1)
array([[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]])

matrix.reshape(12)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

转置T

matrix.T

# Load library
import numpy as np
# Create matrix
matrix = np.array([[1, 2, 3],
				   [4, 5, 6],
				   [7, 8, 9]])
# Transpose matrix
matrix.T

array([[1, 4, 7],
	   [2, 5, 8],
	   [3, 6, 9]])
# Transpose vector
np.array([1, 2, 3, 4, 5, 6]).T
array([1, 2, 3, 4, 5, 6])

# Tranpose row vector
np.array([[1, 2, 3, 4, 5, 6]]).T
array([[1],
	   [2],
	   [3],
	   [4],
	   [5],
	   [6]])

flattening matrix

matrix.flatten()

# Load library
import numpy as np
# Create matrix
matrix = np.array([[1, 2, 3],
				   [4, 5, 6],
	 			   [7, 8, 9]])
# Flatten matrix
matrix.flatten()
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

matrix.reshape(1, -1)
array([[1, 2, 3, 4, 5, 6, 7, 8, 9]])

np.linalg.matrix_rank( matrix )

# Load library
import numpy as np
# Create matrix
matrix = np.array([[1, 1, 1],
			 	   [1, 1, 10],
				   [1, 1, 15]])
# Return matrix rank
np.linalg.matrix_rank(matrix)
2

行列式

np.linalg.det(matrix)

# Load library
import numpy as np
# Create matrix
matrix = np.array([[1, 2, 3],
	    	       [2, 4, 6],
			       [3, 8, 9]])
# Return determinant of matrix
np.linalg.det(matrix)
0.0

对角矩阵

matrix.diagonal()

# Load library
import numpy as np
# Create matrix
matrix = np.array([[1, 2, 3],
				   [2, 4, 6],
			       [3, 8, 9]])
# Return diagonal elements
matrix.diagonal()
array([1, 4, 9])

# Return diagonal one above the main diagonal
matrix.diagonal(offset=1)
array([2, 6])
# Return diagonal one below the main diagonal
matrix.diagonal(offset=-1)
array([2, 8])

迹(trace)

matrix.trace()

# Load library
import numpy as np
# Create matrix
matrix = np.array([[1, 2, 3],
	 			   [2, 4, 6],
				   [3, 8, 9]])
# Return trace
matrix.trace()

# Return diagonal and sum elements
sum(matrix.diagonal())

特针值

eigenvalues, eigenvectors = np.linalg.eig(matrix)

# Load library
import numpy as np

# Create matrix
matrix = np.array([[1, -1, 3],
				   [1, 1, 6],
			       [3, 8, 9]])
			       
# Calculate eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(matrix)

# View eigenvalues
eigenvalues
array([ 13.55075847, 0.74003145, -3.29078992])

# View eigenvectors
eigenvectors
array([[-0.17622017, -0.96677403, -0.53373322],
[-0.435951 , 0.2053623 , -0.64324848],
[-0.88254925, 0.15223105, 0.54896288]])

点乘(dot product)

np.dot(vector_a, vector_b)

# Load library
import numpy as np

# Create two vectors
vector_a = np.array([1,2,3])
vector_b = np.array([4,5,6])

# Calculate dot product
np.dot(vector_a, vector_b)
32

或者用@
# Calculate dot product
vector_a @ vector_b
32

加减

# Add two matrices
np.add(matrix_a, matrix_b)

# Subtract two matrices
np.subtract(matrix_a, matrix_b)

# Add two matrices
matrix_a + matrix_b

矩阵乘积

# dort prduct
 Multiply two matrices
matrix_a @ matrix_b


#element-wise multiplication
matrix_a * matrix_b

逆矩阵

np.linalg.inv(matrix)


np.linalg.inv(matrix)

产生随机数值

np.random.seed(0)
np.random.random(3)

# Load library
import numpy as np

# Set seed
np.random.seed(0)

# Generate three random floats between 0.0 and 1.0

np.random.random(3)
array([ 0.5488135 , 0.71518937, 0.60276338])
# Generate three random integers between 1 and 10
np.random.randint(0, 11, 3)

# Draw three numbers from a normal distribution with mean 0.0
# and standard deviation of 1.0
np.random.normal(0.0, 1.0, 3)

# Draw three numbers from a logistic distribution with mean 0.0 and scale of 1.0
np.random.logistic(0.0, 1.0, 3)

# Draw three numbers greater than or equal to 1.0 and less than 2.0
np.random.uniform(1.0, 2.0, 3)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万物琴弦光锥之外

给个0.1,恭喜老板发财

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值