YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)

本文详细介绍了如何从零开始使用YOLOv5训练自己的目标检测模型,包括环境配置、数据集标注、数据集划分、模型训练、测试与推理,以及使用PYQT5构建可视化界面。通过实例演示了每个步骤,适合初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

前言

通过前几篇文章,相信大家已经学会训练自己的数据集了。本篇是YOLOv5入门实践系列的最后一篇,也是一篇总结,我们再来一起按着配置环境-->标注数据集-->划分数据集-->训练模型-->测试模型-->推理模型的步骤,从零开始,一起实现自己的目标检测模型吧!

前期回顾:

YOLOv5入门实践(1)——手把手带你环境配置搭建

YOLOv5入门实践(2)——手把手教你利用labelimg标注数据集

YOLOv5入门实践(3)——手把手教你划分自己的数据集

YOLOv5入门实践(4)——手把手教你训练自己的数据集
 

962f7cb1b48f44e29d9beb1d499d0530.gif​   🍀本人YOLOv5源码详解系列:  

YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析

​​​​​​YOLOv5源码逐行超详细注释与解读(2)——推理部分detect.py

YOLOv5源码逐行超详细注释与解读(3)——训练部分train.py

YOLOv5源码逐行超详细注释与解读(4)——验证部分val(test).py

YOLOv5源码逐行超详细注释与解读(5)——配置文件yolov5s.yaml

YOLOv5源码逐行超详细注释与解读(6)——网络结构(1)yolo.py

YOLOv5源码逐行超详细注释与解读(7)——网络结构(2)common.py


目录

前言

🌟一、 配置环境

1.1 安装CUDA 和cuDNN

1.2 配置YOLOv5环境

1.yolov5的源码下载

2.预训练模型下载

3.安装yolov5的依赖项 

🌟二、 标注数据集

2.1 利用labelimg标注数据集

评论 55
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路人贾'ω'

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值