Loss

本文总结了论文《WHAT’S IN A LOSS FUNCTION FOR IMAGE CLASSIFICATION?》的关键发现:不同的损失函数和正则化方法虽然对准确率的影响有限,但足以在某些场景中产生意义;选择的损失函数主要影响网络的最后几层;不同目标导致倒数第二层的表示有显著差异,且此类表示与任务间的迁移能力成反比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Summary of Paper “WHAT’S IN A LOSS FUNCTION FOR IMAGE CLASSIFICATION?”

  1. Different losses and regularizers achieve broadly similar accuracies. Although the acuuracy differences are larger enough to be meaningful in some contexts, the largerst difference is still < 1.5%.
  2. The choice of loss function affects representations in only the last few layers of the network, suggesting inherent limitations to what can be achieved by manipulating the loss.
  3. Different objectives (losses/regularizers) lead to substantially different penultimate layer representations. Claa separation is an important factor that distinguishes these different penultimate layer representations, ans show that it is inversely related to transferability of representation to other tasks.

References

  1. Paper “WHAT’S IN A LOSS FUNCTION FOR IMAGE CLASSIFICATION?” https://arxiv.org/abs/2010.16402
  2. https://neptune.ai/blog/pytorch-loss-functions?utm_source=facebook&utm_medium=post-in-group&utm_campaign=blog-pytorch-loss-functions&fbclid=IwAR13rfPMXDJQdTRBboUrycW8W-qIrevFbsvS4ppy00Da40hqJRK0kG9aNaU
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值