为什么提取深度数据的代码需要把y写前面x写后面 depth_frame[y, x] 或者get_distance(j, i)

文章解释了在编程和图像处理中,如何使用行优先(row-major)索引来访问深度图像数据。深度帧(depth_frame)中的元素通过像素坐标(y,x)获取,如depth_frame[300,500]表示特定像素的深度值。这种行索引方式源于数学表示和内存效率的考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ChatGPT的回答:

The code line distance = depth_frame[y_coordinate, x_coordinate] suggests that depth_frame is accessed using row-major order, which is typical in many programming languages and libraries dealing with matrices or two-dimensional arrays. In this context, the first index (y_coordinate) selects the row, and the second index (x_coordinate) selects the column within that row. This ordering convention is rooted in the way matrices are conventionally represented in mathematics, where a position within a matrix is often denoted as (row, column) or (i, j), with i indicating the row and j the column.

This approach also aligns with the Cartesian coordinate system used in images, where the origin (0, 0) is typically at the top-left corner. The y-coordinate then indicates how far down from the top the pixel is (the row in the image data), and the x-coordinate indicates how far to the right from the left edge the pixel is (the column in the image data).

In many programming languages and libraries that process images or matrices (such as NumPy in Python, MATLAB, and OpenCV), this convention is used because it reflects the underlying data structure of an image or a matrix as a series of rows, where each row is a series of elements. Thus, accessing an element through [row, column] or [y, x] is both intuitive in terms of mathematical notation and efficient for accessing contiguous memory locations in row-major storage systems.

画个图示意一下:


简言之,图片的深度值存在一个矩阵中,按照像素坐标调取矩阵中相应位置的元素。

举例
假如你想要获得深度值的这个像素在像素坐标中的表示为 (x0, y0) = (500, 300),那么这个像素点对应的深度值,可以按照去深度矩阵中的第300行(row),第500列(column)去找。如果像素矩阵的名称表示为depth_frame,那么该像素的深度值即为depth_frame[300, 500]

kjx@kjx-Redmi-G-2022:~$ roslaunch realsense2_camera rs_camera.launch ... logging to /home/kjx/.ros/log/66236e98-0fc3-11f0-8d73-a95cd1cc5b45/roslaunch-kjx-Redmi-G-2022-43120.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://kjx-Redmi-G-2022:44625/ SUMMARY ======== PARAMETERS * /camera/realsense2_camera/accel_fps: -1 * /camera/realsense2_camera/accel_frame_id: camera_accel_frame * /camera/realsense2_camera/accel_optical_frame_id: camera_accel_opti... * /camera/realsense2_camera/align_depth: False * /camera/realsense2_camera/aligned_depth_to_color_frame_id: camera_aligned_de... * /camera/realsense2_camera/aligned_depth_to_fisheye1_frame_id: camera_aligned_de... * /camera/realsense2_camera/aligned_depth_to_fisheye2_frame_id: camera_aligned_de... * /camera/realsense2_camera/aligned_depth_to_fisheye_frame_id: camera_aligned_de... * /camera/realsense2_camera/aligned_depth_to_infra1_frame_id: camera_aligned_de... * /camera/realsense2_camera/aligned_depth_to_infra2_frame_id: camera_aligned_de... * /camera/realsense2_camera/allow_no_texture_points: False * /camera/realsense2_camera/base_frame_id: camera_link * /camera/realsense2_camera/calib_odom_file: * /camera/realsense2_camera/clip_distance: -2.0 * /camera/realsense2_camera/color_fps: -1 * /camera/realsense2_camera/color_frame_id: camera_color_frame * /camera/realsense2_camera/color_height: -1 * /camera/realsense2_camera/color_optical_frame_id: camera_color_opti... * /camera/realsense2_camera/color_width: -1 * /camera/realsense2_camera/confidence_fps: -1 * /camera/realsense2_camera/confidence_height: -1 * /camera/realsense2_camera/confidence_width: -1 * /camera/realsense2_camera/depth_fps: -1 * /camera/realsense2_camera/depth_frame_id: camera_depth_frame * /camera/realsense2_camera/depth_height: -1 * /camera/realsense2_camera/depth_optical_frame_id: camera_depth_opti...
最新发布
04-04
import cv2 import numpy as np import open3d as o3d import pyrealsense2 as rs import os import time # 初始化RealSense管道 pipeline = rs.pipeline() config = rs.config() # 启用彩色流和深度流 config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) # 彩色图像:640x480,30fps config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) # 深度图像:640x480,30fps # 启动管道 pipeline.start(config) # 创建保存图像的文件夹 output_folder = "output_images" if not os.path.exists(output_folder): os.makedirs(output_folder) # 相机内参(需要根据相机校准结果填) fx = 600 # 焦距 x fy = 600 # 焦距 y cx = 320 # 主点 x cy = 240 # 主点 y # 从深度图像生成点云 def depth_to_point_cloud(depth_image, fx, fy, cx, cy): height, width = depth_image.shape point_cloud = [] for v in range(height): for u in range(width): z = depth_image[v, u] / 1000.0 # 深度值(假设单位为毫米,转换为米) if z == 0: continue # 忽略无效点 x = (u - cx) * z / fx y = (v - cy) * z / fy point_cloud.append([x, y, z]) return np.array(point_cloud) # 分析点云的几何特征 def analyze_point_cloud(point_cloud): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(point_cloud) # 平面分割(用于检测立方体、长方体等) plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000) [a, b, c, d] = plane_model print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0") # 判断是否为立方体或长方体 if len(inliers) > 0.5 * len(point_cloud): print("Detected: Cube or Cuboid") # 计算边长 inlier_cloud = pcd.select_by_index(inliers) bounds = inlier_cloud.get_axis_aligned_bounding_box() dimensions = bounds.get_extent() print(f"Dimensions (W x H x D): {dimensions[0]:.2f}m x {dimensions[1]:.2f}m x {dimensions[2]:.2f}m") else: print("Detected: Non-planar object (e.g., sphere, cylinder, cone)") try: frame_count = 0 while True: # 等待一组帧(颜色和深度frames = pipeline.wait_for_frame
03-22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值