Bag of features——计算机视觉

1.原理

Bag of words模型最初被用在文本分类中,将文档表示成特征矢量。它的基本思想是假定对于一个文本,忽略其词序和语法、句法,仅仅将其看做是一些词汇的集合,而文本中的每个词汇都是独立的。
简单说就是将每篇文档都看成一个袋子(因为里面装的都是词汇,所以称为词袋,Bag of words即因此而来),然后根据袋子里装的词汇对其进行分类。如文档中猪、马、牛、羊、山谷、土地、拖拉机这样的词汇多些,而银行、大厦、汽车、公园这样的词汇少些,我们就倾向于判断它是一篇描绘乡村的文档,而不是描述城镇的。
根据每个单词在文本中出现的权重,便可构造单词的频率直方图。词表就相当于直方图的基,新来要表述的文档向这个基上映射。
Bag-of-Features模型仿照文本检索领域的Bag-of-Words方法,把每幅图像描述为一个局部区域/关键点(Patches/Key Points)特征的无序集合。使用某种聚类算法(如K-means)将局部特征进行聚类,每个聚类中心被看作是词典中的一个视觉词汇(Visual Word),相当于文本检索中的词,视觉词汇由聚类中心对应特征形成的码字(code word)来表示(可看当为一种特征量化过程)。所有视觉词汇形成一个视觉词典(Visual Vocabulary),对应一个码书(code book),即码字的集合,词典中所含词的个数反映了词典的大小。图像中的每个特征都将被映射到视觉词典的某个词上,这种映射可以通过计算特征间的距离去实现,然后统计每个视觉词的出现与否或次数,图像可描述为一个维数相同的直方图向量,即Bag-of-Features。
在这里插入图片描述
Bag-of-Features更多地是用于图像分类或对象识别。在上述思路下对训练集提取Bag-of-Features特征,在某种监督学习(如:SVM)的策略下,对训练集的Bag-of-Features特征向量进行训练,获得对象或场景的分类模型;对于待测图像,提取局部特征,计算局部特征与词典中每个码字的特征距离,选取最近距离的码字代表该特征,建立一个统计直方图,统计属于每个码字的特征个数,即为待测图像之Bag-of-Features特征;在分类模型下,对该特征进行预测从实现对待测图像的分类。

实现检索的过程同分类的过程无本质的差异,更多的是细节处理上的差异:
1、局部特征提取;
2、构建视觉词典;
3、生成原始BOF特征;
4、引入TF-IDF权值:
TF-IDF是一种用于信息检索的常用加权技术,在文本检索中,用以评估词语对于一个文件数据库中的其中一份文件的重要程度。词语的重要性随着它在文件中出现的频率成正比增加,但同时会随着它在文件数据库中出现的频率成反比下降。TF的主要思想是:如果某个关键词在一篇文章中出现的频率高,说明该词语能够表征文章的内容,该关键词在其它文章中很少出现,则认为此词语具有很好的类别区分度,对分类有很大的贡献。IDF的主要思想

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值