YOLOv4-yiny 消融实验

该实验对比了使用CSPNet和CSPDarknet53的灵活性,并在不同嵌入式GPU上测试了YOLOv4-tiny的性能。结果显示,YOLOv4-tiny在Xavier AGX, Xavier NX, Jetson TX2, Jetson NANO等设备上均能实现实时性能。采用TensorRT FP16加速后,在特定配置下,帧率可达380到1774 FPS。" 70226666,5745352,使用sklearn的GridSearchCV进行参数调优,"['数据挖掘', '机器学习', '模型优化']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
We design an experiment to show how flexible can be if one uses CSPNet with partial functions in computational blocks. We also compare with CSPDarknet53, in which we perform linear scaling down on width and depth.

算法性能

Finally, we put YOLOv4-tiny on different embedded GPUs for testing, including Xavier AGX, Xavier NX, Jetson TX2, Jetson NANO. We also use TensorRT FP32 (FP16 if supported) for testing. All frame rates obtained by different models are listed in Table 14. It is apparent that YOLOv4-tiny can achieve real-time performance no matter which device is used. If we adopt FP16 and batch size 4 to test Xavier AGX and Xavier NX, the frame rat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gallant Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值