python-SVD压缩图像文件方法

def printMat(inMat, thresh=0.7):

    for i in range(32):
        for k in range(32):
            if float(inMat[i,k]) > thresh:
                print (1,end=' ')
            else: 
                print (0,end=' ')
        print(end=' ')
#########################################################
def imgCompress(numSV=3, thresh=0.7):
    myl = []
    for line in open('d:\\0_5.txt').readlines():
        newRow = []
        for i in range(32):
            newRow.append(int(line[i]))
        myl.append(newRow)
    myMat = mat(myl)
    #print "****original matrix******"
    printMat(myMat, thresh)
    U,Sigma,VT = la.svd(myMat)
    SigRecon = mat(zeros((numSV, numSV)))
    for k in range(numSV):  
    #construct diagonal matrix from vector
        SigRecon[k,k] = Sigma[k]
    reconMat = U[:,:numSV]*SigRecon*VT[:numSV,:]
    #print "****reconstructed matrix using %d singular values******" % numSV
    print("shape(reconMat)",shape(reconMat))
    printMat(reconMat,thresh) 
    #只需要存储U和VT以及Sigma数据,一行即可.

    #降为2维,32*32 变为32*2*2  而原先32*32,所以压缩能得到1/8.

imgCompress()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值