牛客练习赛79
A. 炼金术师
单调栈裸题,很容易想到对于每一次的粉刷,都要找到他上一次粉刷到的比他大的区间(就是单调栈中栈顶的下一个元素),在他的基础上加一种颜色。最后的结果只是判一下单调栈中最后存在多少个数。
代码
#include <bits/stdc++.h>
#define ll long long
#define mem( f, x ) memset( f, x, sizeof(f))
#define pii pair<int,int>
#define fi first
#define se second
#define mk(x,y) make_pair(x,y)
#define pk push_back
using namespace std;
const int M = 1e6+5;
const int N = 50;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int m, n;
int a[N], cnt[N];
int sk[N], ct;
int main( ){
while( scanf( "%d", &n ) != EOF ){
ct = 0;
for( int i = 0; i < n; i++ ){
scanf( "%d", a+i );
while( ct && a[sk[ct-1]] <= a[i] )
ct--;
if( !ct )
cnt[i] = 1;
else
cnt[i] = cnt[sk[ct-1]]+1;
sk[ct++] = i;
}
printf( "%d\n", cnt[n-1] );
}
return 0;
}
B. 刀工对决
要将两根面条切成一样长,有两种刀,用BFS处理出切的过程中达到的长度,两个面条切的过程中相遇的时候就是最少的切的次数。
代码
#include <bits/stdc++.h>
#define ll long long
#define mem( f, x ) memset( f, x, sizeof(f))
#define pii pair<int,int>
#define fi first
#define se second
#define mk(x,y) make_pair(x,y)
#define pk push_back
using namespace std;
const int M = 1e6+5;
const int N = 50;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int m, n;
unordered_map<int,int> mpx;
unordered_map<int,int> mpy;
void Bfs1( int x ){
queue<int> q;
mpx.clear();
q.push( x );
mpx[x] = 0;
int cur, nxt;
while( !q.empty() ){
cur = q.front();
q.pop();
if( cur%3 == 0 ){
nxt = cur/3;
if( !mpx.count(nxt) )
mpx[nxt] = mpx[cur]+1;
else{
if( mpx[nxt] > mpx[cur]+1 )
mpx[nxt] = mpx[cur]+1;
}
q.push( nxt );
}
if( cur%5 == 0 ){
nxt = cur/5*3;
if( !mpx.count(nxt) )
mpx[nxt] = mpx[cur]+1;
else{
if( mpx[nxt] > mpx[cur]+1 )
mpx[nxt] = mpx[cur]+1;
}
q.push( nxt );
}
}
}
int Bfs2( int y ){
queue<int> q;
mpy.clear();
q.push( y );
mpy[y] = 0;
int cur, nxt;
while( !q.empty() ){
cur = q.front();
q.pop();
if( mpx.count( cur ) )
return mpy[cur]+mpx[cur];
if( cur%3 == 0 ){
nxt = cur/3;
if( !mpy.count(nxt) )
mpy[nxt] = mpy[cur]+1;
else{
if( mpy[nxt] > mpy[cur]+1 )
mpy[nxt] = mpy[cur]+1;
}
q.push( nxt );
}
if( cur%5 == 0 ){
nxt = cur/5*3;
if( !mpy.count(nxt) )
mpy[nxt] = mpy[cur]+1;
else{
if( mpy[nxt] > mpy[cur]+1 )
mpy[nxt] = mpy[cur]+1;
}
q.push( nxt );
}
}
return -1;
}
int main( ){
while( scanf( "%d", &n ) != EOF ){
int x, y;
int ans = 0;
bool flag = 0;
for( int i = 0; i < n; i++ ){
scanf( "%d %d", &x, &y );
if( !flag ){
Bfs1( x );
int tmp = Bfs2( y );
if(tmp == -1 )
flag = 1;
ans += tmp;
}
}
if( !flag )
printf( "%d\n", ans );
else
printf("-1\n" );
}
return 0;
}
C. 小G的GCD
牛客套路题,凡是给了代码,先粘进编译器跑一发。我是打表打到n=20的时候,确定了是个斐波那契的变形(不会证明)。最终的答案就是首项为1,次项为2的斐波那契数列的下标加2,在这个斐波那契数列中找到最大且小于n的项即可。
代码
#include <bits/stdc++.h>
#define ll long long
#define mem( f, x ) memset( f, x, sizeof(f))
#define pii pair<int,int>
#define fi first
#define se second
#define mk(x,y) make_pair(x,y)
#define pk push_back
using namespace std;
const int M = 105;
const int N = 1e5+5;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
ll m, n;
ll f[100];
int cnt;
/*
long long GCD(long long x, long long y) {
if (!y) return 1ll;
return GCD(y, x % y) + 1ll;
}
long long maxGCD(long long n) {
long long ans = 0ll;
ll x, y;
for (long long i = 1; i <= n; i++)
for (long long j = 1; j <= n; j++){
ll tmp = GCD( i, j );
if( ans < tmp ){
x = i, y = j;
ans = tmp;
}
}
printf( "%lld %lld\n", x, y );
return ans;
}
int main( ){
while( scanf( "%lld", &n ) != EOF ){
cout << maxGCD( n ) << endl;
}
return 0;
}
*/
void gao( ){
f[0] = 1, f[1] = 2;
int i = 2;
ll nxt = f[0]+f[1];
cnt = 2;
while( nxt <= 1e18 ){
f[cnt++] = nxt;
nxt = f[cnt-1]+f[cnt-2];
}
}
int main( ){
gao( );
while( scanf( "%lld", &n ) != EOF ){
int pos = 0;
while( f[pos] <= n )
pos++;
pos--;
printf( "%d\n", pos+2 );
}
return 0;
}
D. 回文字D
尺取法加一个字符串hash,若是起始下标为i,长度为D的子串不为回文串,则统计个数直接加一,若是为回文串,则继续判起始下标为i+1,长度为D的子串是否为回文串,直到长度为D的子串不为回文串为止,统计个数加一。需要注意的是,若不为回文串,则将D-1个字符归为一串,下一次判的时候起始位置为这一次的终止位置即 i+D-1。
代码
#include <bits/stdc++.h>
#define ll long long
#define mem( f, x ) memset( f, x, sizeof(f))
#define pii pair<int,int>
#define fi first
#define se second
#define mk(x,y) make_pair(x,y)
#define pk push_back
typedef unsigned long long int ull;
using namespace std;
const int M = 1e7+5;
const int N = 1e7+5;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
const int base=13331; //玄学数字,这个数可以降低重复率
int m, n;
char s[N];
ull h1[N], h2[N], pw[N];
ull gethash1( int l, int r ){
return h1[r]-h1[l-1]*pw[r-l+1];
}
ull gethash2( int l, int r ){
return h2[r]-h2[l-1]*pw[r-l+1];
}
bool judge( int l, int r ){
return gethash1(l, r) == gethash2(n-r+1, n-l+1);
}
int main( ){
while( scanf( "%d %d", &n, &m ) != EOF ){
scanf( "%s", s+1 );
h1[0] = h2[0] = 0;
pw[0] = 1;
for( int i = 1; i <= n; i++ ){
h1[i] = h1[i-1]*base+(s[i]-'a'+1);
h2[i] = h2[i-1]*base+(s[n-i+1]-'a'+1);
pw[i] = pw[i-1]*base;
}
int ans = 0;
for( int st = 1, ed; st <= n; st = ed ){
ed = st+m-1;
while( ed <= n && judge( ed-m+1, ed ) ) ed++;
ans++;
}
printf( "%d\n", ans );
}
return 0;
}