Mobile Robot Posture Stabilization (Regulation)

本文探讨了轮式机器人的姿态稳定控制问题,包括开放环控制中的非完整路径规划及闭合环控制中的状态反馈控制。特别介绍了极坐标系下稳定控制器的设计方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

definition

The posture stabilizationposture \ stabilizationposture stabilization problem is to stabilize the vehicle to a desired final posture starting from any initial posture (posturepostureposture means both the position and the orientation of a mobile robot from base).

difficulty

Posture stabilization problem of wheeled mobile robot is more difficult than the tracking problem in the sense that nonholonomic systems with more degrees of freedom than control inputs cannot be stabilized by any static state feedback control law.

method

The approached for this problem can be largely divided into two categories:

  1. open-loop control —— the nonholonomic path-planning
    In the nonholonomic path-planning, authors assume inputs(v,ϕ)(v, \phi)(v,ϕ) in kinematic model as a function of time, then modify the assumed function to fit their purpose.
    However, it is generally difficult to find or modify inputs v,ϕv, \phiv,ϕ which transfer a car-like mobile robot to a desired posture and a tracking control should be designed because it is only a path-planning.
  2. closed-loop control —— state feedback control
    The most important merit of state feedback control in posture stabilization is that it can be directly used as a controller without any path-planning.

Polar Coordinate-based Stabilizer

It is assumed that, without loss of generality, that the desired configuration is the origin qd=[0,0,0]T\mathbf{q}_{d} = [0, 0, 0]^{T}qd=[0,0,0]T
在这里插入图片描述
Formulate the problem in polar coordinate:
state representation:
ρ=x2+y2\rho = \sqrt{x^{2} + y^{2}}ρ=x2+y2 γ=Atan2(y,x)−θ+π\gamma = Atan2(y,x) - \theta + \piγ=Atan2(y,x)θ+π δ=γ+θ\delta = \gamma + \thetaδ=γ+θ
kinematic model:
ρ˙=−v cosγ\dot{\rho} = -v \ cos\gammaρ˙=v cosγ γ˙=sinγρv−w\dot{\gamma} = \frac{sin\gamma}{\rho}v -wγ˙=ρsinγvw δ˙=sinγρv\dot{\delta} = \frac{sin \gamma}{\rho} vδ˙=ρsinγv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值