标准分布也即是:正态分布。 在来自独立源的数据的随机集合中,通常观察到数据的分布是正态的。
在图中,曲线的中心表示数据集的平均值。 50%的值位于平均值的左侧,另外50%位于图表的右侧。
正态分布
开始前先附一篇下述四个函数的统计学讲解,个人感觉较为详细http://www.360doc.com/content/18/0913/18/19913717_786412696.shtml
R语言有四个内置函数来产生正态分布:
dnorm(x, mean, sd)
pnorm(x, mean, sd)
qnorm(p, mean, sd)
rnorm(n, mean, sd)
以下是在上述功能中使用的参数的描述:
- x是数字的向量。
- p是概率的向量。
- n是观察的数量(样本大小)。
- mean是样本数据的平均值。 它的默认值为零。
- sd是标准偏差。 它的默认值为1。
dnorm()
该函数给出给定平均值和标准偏差在每个点的概率分布的高度。
翻译一下就是:返回值是正态分布概率密度函数值,比如dnorm(z)则表示:标准正态分布密度函数f(x)在x=z处的函数值。
输入:
# Create a sequence of numbers between -10 and 10 incrementing by 0.1.
x <- seq(-10, 10, by = .1)
# Choose the mean as 2.5 and standard deviation as 0.5.
y <- dnorm(x, mean = 2.5, sd = 0.5)
# Give the chart file a name.
png(file = "dnorm.png")
plot(x,y)
# Save the file.
dev.off()
输出: