LEARNING GOAL-CONDITIONED VALUE FUNCTIONS WITH ONE-STEP PATH REWARDS RATHER THAN GOAL- REWARDS

本文提出了一种新的目标条件强化学习算法,该算法通过学习一步路径奖励而非目标奖励来去除目标奖励的依赖,提高了样本效率,尤其是在奖励计算方面。通过对Fetch-Push任务的分析,证明了目标奖励的冗余性,同时扩展了Floyd-Warshall强化学习算法以适应深度神经网络。实验结果显示,这种方法在性能上与HER相当,但减少了奖励计算的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习目标条件的价值功能与一步走的路径奖励比目标奖励更多

ABSTRACT

Multi-goal reinforcement learning (MGRL) addresses tasks where the desired goal state can change for every trial. State-of-the-art algorithms model these problems such that the reward formulation depends on the goals, to associate them with high reward. This dependence introduces additional goal reward resampling steps in algorithms like Hindsight Experience Replay (HER) that reuse trials in which the agent fails to reach the goal by recomputing rewards as if reached states were psuedo-desired goals. We propose a reformulation of goal-conditioned value func-tions for MGRL that yields a similar algorithm, while removing the dependence of reward functions on the goal. Our formulation thus obviat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Adam婷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值