哈密顿算子在直角坐标系的矩阵表示

本文深入探讨了矢量微积分的基本概念,包括梯度、散度、旋度和拉普拉斯算子的定义及其在三维空间中的表达。通过详细的数学公式,解释了这些概念如何应用于物理和其他科学领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

∇=[∂∂x∂∂y∂∂z],∇×=[0−∂∂z∂∂y∂∂z0−∂∂x−∂∂y∂∂x0],∇2=[∂∂x∂∂y∂∂z]T[∂∂x∂∂y∂∂z]=(∂2∂x2+∂2∂y2+∂2∂z2)\nabla= \begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}, \nabla \times = \begin{bmatrix} 0 & -\frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial x} \\\\ -\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \end{bmatrix}, \nabla^2= \begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}^T \begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix} =(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}) =xyz×=0zyz0xyx02=xyzTxyz=(x22+y22+z22)

(1)∇ϕ=[∂∂x∂∂y∂∂z]ϕ=[∂ϕ∂x∂ϕ∂y∂ϕ∂z]\nabla \phi=\begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}\phi=\begin{bmatrix} \frac{\partial \phi}{\partial x} \\\\ \frac{\partial \phi}{\partial y} \\\\ \frac{\partial \phi}{\partial z} \end{bmatrix}\tag 1 ϕ=xyzϕ=xϕyϕzϕ(1)(2)∇⋅A⃗=[∂∂x∂∂y∂∂z]T[AxAyAz] \nabla \cdot \vec A =\begin{bmatrix} \frac{\partial}{\partial x} \\\\ \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} \end{bmatrix}^T\begin{bmatrix} A_x \\\\ A_y \\\\ A_z \end{bmatrix}\tag 2 A=xyzTAxAyAz(2)(3)∇×A⃗=[0−∂∂z∂∂y∂∂z0−∂∂x−∂∂y∂∂x0][AxAyAz] \nabla \times \vec A = \begin{bmatrix} 0 & -\frac{\partial }{\partial z} & \frac{\partial}{\partial y} \\\\ \frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial x} \\\\ -\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \end{bmatrix}\begin{bmatrix} A_x \\\\ A_y \\\\ A_z \end{bmatrix}\tag 3 ×A=0zyz0xyx0AxAyAz(3)(4)∇2ϕ=(∂2∂x2+∂2∂y2+∂2∂z2)ϕ \nabla^2\phi=(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})\phi\tag 42ϕ=(x22+y22+z22)ϕ(4)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值