- 求sinc函数的积分:
I=∫−∞+∞sin(x)xdx I=\int_{-\infty}^{+\infty} \frac{sin(x)}{x}dx I=∫−∞+∞xsin(x)dx - 解法如下:
易知有∫0+∞e−xtdt=1x 易知有\int_{0}^{+\infty}e^{-xt}dt=\frac{1}{x}\\ 易知有∫0+∞e−xtdt=x1
I=∫−∞+∞sin(x)xdx=2∫0+∞sin(x)xdx=2∫0+∞sin(x)(∫0+∞e−xtdt)dx=2∫0+∞[∫0+∞sin(x)e−xtdx]dt=2∫0+∞11+t2dt (此步可由分部积分得到)=π \begin{aligned} I&=\int_{-\infty}^{+\infty} \frac{sin(x)}{x}dx\\ &=2\int_{0}^{+\infty} \frac{sin(x)}{x}dx\\ &=2\int_{0}^{+\infty}sin(x)(\int_{0}^{+\infty}e^{-xt}dt)dx\\ &=2\int_{0}^{+\infty}[\int_{0}^{+\infty}sin(x)e^{-xt}dx]dt\\ &=2\int_{0}^{+\infty}\frac{1}{1+t^2}dt~~~~~~~~~~~~~~(此步可由分部积分得到)\\ &=\pi \end{aligned} I=∫−∞+∞xsin(x)dx=2∫0+∞xsin(x)dx=2∫0+∞sin(x)(∫0+∞e−xtdt)dx=2∫0+∞[∫0+∞sin(x)e−xtdx]dt=2∫0+∞1+t21dt (此步可由分部积分得到)=π
sinc函数的积分
最新推荐文章于 2024-11-16 05:30:00 发布