【tensorflow2.x】自编码器mnist

import tensorflow as tf
import matplotlib.pyplot as plt

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = tf.expand_dims(x_train / 255.0, -1)

class Encoder(tf.keras.Model):
    def __init__(self):
        super(Encoder, self).__init__()
        self.conv = tf.keras.Sequential([
            tf.keras.layers.Conv2D(filters=32, kernel_size=(7, 7), activation='relu', strides=2),
            tf.keras.layers.BatchNormalization(),
            tf.keras.layers.Conv2D(filters=64, kernel_size=(5, 5), activation='relu', strides=1),
            tf.keras.layers.BatchNormalization(),
            tf.keras.layers.Conv2D(filters=128, kernel_size=(3, 3), activation='relu', strides=1),
            tf.keras.layers.BatchNormalization(),
        ])
        self.fc = tf.keras.Sequential([
            tf.keras.layers.Flatten(),
            tf.keras.layers.Dense(128, activation='relu'),
            tf.keras.layers.Dense(128, activation='relu'),
            tf.keras.layers.Dense(2, activation='tanh')
        ])

    def call(self, inputs):
        x = self.conv(inputs)
        y = self.fc(x)
        return y

class Decoder(tf.keras.Model):
    def __init__(self):
        super(Decoder, self).__init__()
        self.fc = tf.keras.Sequential([
            tf.keras.layers.Dense(128, activation='relu'),
            tf.keras.layers.Dense(128, activation='relu'),
            tf.keras.layers.Dense(5 * 5 * 128, activation='relu'),
        ])
        self.d_conv = tf.keras.Sequential([
            tf.keras.layers.Conv2DTranspose(filters=64, kernel_size=(3, 3), activation='relu', strides=1),
            tf.keras.layers.BatchNormalization(),
            tf.keras.layers.Conv2DTranspose(filters=32, kernel_size=(5, 5), activation='relu', strides=1),
            tf.keras.layers.BatchNormalization(),
            tf.keras.layers.Conv2DTranspose(filters=1, kernel_size=(8, 8), activation='sigmoid', strides=2),
            tf.keras.layers.BatchNormalization(),
        ])

    def call(self, inputs):
        x = self.fc(inputs)
        x = tf.reshape(x, [-1, 5, 5, 128])
        y = self.d_conv(x)
        return y

if __name__ == '__main__':

    encoder = Encoder()
    decoder = Decoder()

    out = encoder.predict(x_train)
    plt.scatter(out.T[0], out.T[1], c=y_train, s=1)
    plt.show()

    model = tf.keras.Sequential([
        encoder, decoder
    ])

    model.compile(optimizer='adam', loss='MSE')

    model.fit(x_train, x_train, batch_size=1024, epochs=100)

    out = encoder.predict(x_train)
    plt.scatter(out.T[0], out.T[1], c=y_train, s=1)
    plt.show()

encode before training

请添加图片描述

encode after training

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值