from ultralytics import YOLO
import torch
# model = YOLO(r"D:\ultralytics\yolov8n.pt") # load a custom trained
model = torch.load(r"D:\ultralytics\yolov8n.pt")
data = torch.randn(1,3,640,640).half().cuda()
output_names = ["output0"]
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}}
dynamic["output0"] = {0: "batch", 2: "anchors"}
model = torch.load('yolov8n.pt')['model'].cuda()
dummy = torch.zeros(1, 3, 640, 640).half().cuda()
torch.onnx.export(
model,
dummy,
"test.onnx",
verbose=False,
opset_version=11,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic or None,
)
yolov8导onnx
最新推荐文章于 2025-04-16 10:14:44 发布