10. 朴素贝叶斯 Naive Bayes

简介:

朴素贝叶斯是一种直接衡量标签和特征之间的概率关系的有监督算法,它既可以做回归也可以分类,只不过多是用于分类之中。

朴素贝叶斯的算法根源就是基于概率论和数理统计的贝叶斯理论,因此它是根正苗红的概率模型。


假设特征之间是有条件独立的,可以解决众多问题,也简化了很多计算过程,这是朴素贝叶斯被称为”朴素“的理由。

因此,贝叶斯在特征之间有较多相关性的数据集上表现不佳,而现实中的数据多多少少都会有一些相关性,所以贝叶斯的分类效力在分类算法中不算特别强大。

 

特点:

朴素贝叶斯是一个不建模的算法。以往我们学的不建模算法,比如KMeans,比如PCA,都是无监督学习,而朴素贝叶斯是一个有监督的,不建模的分类算法。

我们认为,训练集和测试集都来自于同一个不可获得的大样本下,并且这个大样本下的各种属性所表现出来的规律应当是一致的,因此训练集上计算出来的各种概率,可以直接放到测试集上来使用。即便不建模,也可以完成分类。

虽然朴素贝叶斯使用了过于简化的假设,这个分类器在许多实际情况中都运行良好,著名的是文档分类和垃圾邮件过滤。而且由于贝叶斯是从概率角度进行估计,它所需要的样本量比较少。当然,如果样本量少于特征数目,贝叶斯的效果就会被削弱。

与SVM和随机森林相比,朴素贝叶斯运行速度更快,因为求解本质是在每个特征上单独对概率进行计算,然后再求乘积,所以每个特征上的计算可以是独立并且并行的,因此贝叶斯的计算速度比较快。

不过相对的,贝叶斯的运行效果不是那么好,所以贝叶斯的接口调用的predict_proba其实也不是总指向真正的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值