一元多次方程求解
Java中可以使用common-math,python中可以使用sympy
依赖:
import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.analysis.UnivariateRealFunction;
import org.apache.commons.math.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math.analysis.solvers.BisectionSolver;
import org.apache.commons.math.analysis.solvers.UnivariateRealSolver;
解一元多次方程X^3 + 2x^2 -x -42=0, 方程输入的参数依次是是常数项,一次系数,二次系数… , 求解器的求解范围是0~6,输出x=2.9999996423721313,非常接近预设值3。代码:
double[] d=new double[]{-42.0,-1.0,2.0,1.0};
UnivariateRealFunction f = new PolynomialFunction(d);
UnivariateRealSolver solver = new BisectionSolver();
try {
System.out.println(solver.solve(f,0,6));
} catch (ConvergenceException e) {
e.printStackTrace();
} catch (FunctionEvaluationException e) {
e.printStackTrace();
}
多项式之间也可以进行计算,例如,下面定义一个和f一样的多项式,把他们相加:
PolynomialFunction p = new PolynomialFunction(d);
System.out.println(f.add(p));
能够观察到,相加之后正好是两个d,输出:
-84.0 - 2.0 x + 4.0 x^2 + 2.0 x^3
其他方法,求度数,求导等:
System.out.println(f.degree());
System.out.println(f.derivative());
System.out.println(f.polynomialDerivative());