最近遇到解联立方程组的问题,例如已知一个三次多项式函数 ax^3 + bx^2 + cx + d = y 过(1,2)(2,5)(4,3)(6,4)等4个点,求解a b c d。
以前学生时期都是用手算的,现在会编程了,就让程序来代劳吧!
联立方程组解法可参照这篇文章
https://blog.youkuaiyun.com/morrismodel/article/details/100528348
后面直接上代码
import java.util.Arrays;
/**
* 联立方程组求解
*/
public class SimultaneousEquation {
private static void printMatrix(double[][] matrix) {
for (int i = 0 ; i < matrix.length ; i++) {
System.out.println(Arrays.toString(matrix[i]));
}
}
/**
* 解联立方程 ax + by = z,已知(x1 y1, z1)、(x2, y2, z2),求解(a, b)
* @param matrix [[x1, y1, z1],[x2, y2, z2]]
* @return [a, b]
*/
public static double[] solution(double[][] matrix) {
System.out.println("solution");
printMatrix(matrix);
try {
// 检查矩阵格式, n * n + 1
int len = matrix.length;
for (int i = 0 ; i < len ; i++) {
if(matrix[i].length != len + 1) {
System.err.println("matrix[i].length != len + 1");
return null;
}
}
// 转阶梯矩阵
if(!step1(matrix, 0)) {
System.err.println("!step1");
return null;
}
System.out.println("step1");
printMatrix(matrix);
// 转行梯矩阵(前面几项减末行)
if(!step2(matrix, len - 1)) {
System.err.println("!step2");
return null;
}
System.out.println("step2");
printMatrix(matrix);
// 归一
for (int i = 0 ; i < len ; i++) {
double[] mi = matrix[i];
double v = mi[i];
multiply(mi, 1 / v);
}
System.out.println("step3");
printMatrix(matrix);
double[] r = new double[len];
for (int i = 0 ; i < len ; i++) {
r[i] = matrix[i][len];
}
return r;
} catch (Exception e){
e.printStackTrace();
}
return null;
}
/**
* 转为倒三角
* @param matrix
* @param index
* @return
*/
private static boolean step1(double[][] matrix, int index) {
int ml = matrix.length;
// 退出条件
if(index == ml - 1) {
if(matrix[index][index] == 0) {
System.err.println("step1 matrix[index][index] == 0");
return false;
} else {
return true;
}
}
// 先检查第一项的首系数不为0,如果第一项首系数为0,需要与后面首系数不为0项互换
if(matrix[index][index] == 0) {
for (int i = index; i < ml; i++) {
if(matrix[i][index] != 0) {
swap(matrix, i, index);
break;
} else {
if(i == ml - 1) {
System.err.println("matrix[j][j] == 0 && j == ml - 1");
return false;
}
}
}
}
// 首列
double[] m0 = matrix[index];
for (int i = index + 1 ; i < ml ; i++) {
double[] m1 = matrix[i];
if(m1[index] == 0) continue;
multiply(m1, m0[index] / m1[index]); // 被减列通乘 首列首系数/当前列首系数
minus(m1, m0); // 被减列减增幅首列
}
return step1(matrix, index + 1);
}
private static boolean step2(double[][] matrix, int index) {
if(index == 0) {
if(matrix[index][index] == 0) {
System.err.println("step2 matrix[index][index] == 0");
return false;
} else {
return true;
}
}
// 末列
double[] m0 = matrix[index];
if(m0[index] == 0) {
System.err.println("m0[index] == 0");
return false;
}
for (int i = 0; i < index; i++) {
double[] m1 = matrix[i];
if(m1[index] == 0) continue;
multiply(m1, m0[index] / m1[index]); // 被减列通乘 末列末系数/当前列末系数
minus(m1, m0); // 被减列减增幅末列
}
return step2(matrix, index - 1);
}
private static void swap(double[][] matrix, int i1 ,int i2) {
double[] tmp = matrix[i1];
matrix[i1] = matrix[i2];
matrix[i2] = tmp;
}
private static double[] multiply(double[] row, double rate) {
for (int i = 0 ; i < row.length ; i++) {
row[i] = row[i] * rate;
}
return row;
}
private static double[] minus(double[] src, double[] minus) {
for (int i = 0 ; i < src.length ; i++) {
src[i] = src[i] - minus[i];
}
return src;
}
public static void main(String[] args) {
float [] xs1 = {1, 2, 4, 6};
float [] ys1 = {2, 5, 3, 4};
double[][] matrix = new double[xs1.length][];
for (int i = 0 ; i < xs1.length ; i++) {
double x = xs1[i];
double y = ys1[i];
matrix[i] = new double[]{x * x * x, x * x, x, 1, y};
}
double [] r = SimultaneousEquation.solution(matrix);
if(r == null) {
System.err.println("r == null");
return;
}
float[] xs2 = new float[60];
float[] ys2 = new float[60];
for (int i = 0 ; i < 60 ; i++) {
double x = 0.5 + i / 10d;
double y = r[0] * x * x * x + r[1] * x * x + r[2] * x + r[3];
xs2[i] = (float) x;
ys2[i] = (float) y;
System.out.println("x:" + x + ", y:" + y);
}
}
}
最后上结果图

66

被折叠的 条评论
为什么被折叠?



