多任务学习

综述
An Overview of Multi-Task Learning in Deep Neural Networks.pdf
https://zhuanlan.zhihu.com/p/269492239

动态loss:
多任务学习之动态权重
MMOE
SNR
Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
简介:https://zhuanlan.zhihu.com/p/65137250utm_source=wechat_session
https://blog.youkuaiyun.com/cdknight_happy/article/details/102618883
https://zhuanlan.zhihu.com/p/65137250utm_source=wechat_session

Multi-Task Learning as Multi-Objective OptimizationAuxiliary Tasks in Multi-task Learning
TF实现:https://github.com/ranandalon/mtl
PYTORCH实现:https://github.com/oscarkey/multitask-learning/blob/c4503c044ca7a29bebd4e70e9e030524654e5d00/multitask-learning/cityscapestask/losses.py#L9
A PyTorch implementation of Liebel L, Körner M. Auxiliary tasks in multi-task learning[J]. arXiv preprint arXiv:1805.06334, 2018.
https://github.com/Mikoto10032/AutomaticWeightedLossother:

dialog1:
https://git.100tal.com/jituan_AILab_Alg_DM_NLP/auto_fill_blanks_english/tree/tbc_2transformers
就这两块做了修改吧,这loss感觉就像是你对一个文本打了两个标签,最后计算两个标签的loss的和。

如何使用不确定性来解释你的模型
Using Uncertainty to Interpret your Model
https://www.sohu.com/a/245880658_114877
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? https://zhuanlan.zhihu.com/p/100998668https://blog.youkuaiyun.com/weixin_39779106/article/details/78968982

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值