5、 基于双线性映射的签名方案和匿名凭证

基于双线性映射的签名方案和匿名凭证

1 引言

在现代密码学中,签名方案和匿名凭证系统是确保信息安全和隐私的关键工具。签名方案不仅提供了电子签名的功能,还可以作为许多加密协议的基础模块,例如匿名投票、电子现金和匿名凭证。近年来,随着双线性映射技术的发展,基于双线性映射的签名方案逐渐成为研究热点。这类方案不仅提高了签名的效率,还增强了安全性。本文将详细介绍一种基于双线性映射的高效签名方案,并探讨其在匿名凭证系统中的应用。

2 数论基础知识

在深入讨论具体的签名方案之前,我们需要了解一些数论基础知识。特别是,双线性映射和LRSW假设在本文中起着至关重要的作用。以下是这些概念的简要介绍:

2.1 双线性映射

双线性映射是指两个乘法循环群 ( \mathbb{G}_1 ) 和 ( \mathbb{G}_2 ),它们的阶为素数 ( p ),以及一个双线性映射 ( e: \mathbb{G}_1 \times \mathbb{G}_1 \rightarrow \mathbb{G}_2 ),满足以下性质:

  • 双线性 :对于所有 ( g_1, g_2 \in \mathbb{G}_1 ) 和 ( a, b \in \mathbb{Z}_p ),有 ( e(g_1^a, g_2^b) = e(g_1, g_2)^{ab} )。
  • 非退化 :存在 ( g_1 \in \mathbb{G}_1 ) 使得 ( e(g_1, g_1) \neq 1 ),其中 ( 1 ) 是 ( \mathbb{G}_2 ) 的单位元。
内容概要:本文系统介绍了基于C#(VS2022+.NET Core)与HALCON 24.11的工业视觉测量拟合技术,涵盖边缘提取、几何拟合、精度优化及工业部署全流程。文中详细解析了亚像素边缘提取、Tukey抗噪算法、SVD平面拟合等核心技术,并提供了汽车零件孔径测量、PCB焊点共面性检测等典型应用场景的完整代码示例。通过GPU加速、EtherCAT同步等优化策略,实现了±0.01mm级测量精度,满足ISO 1101标准。此外,文章还探讨了深度学习、量子启发式算法等前沿技术的应用前景。 适合人群:具备一定编程基础,尤其是熟悉C#HALCON的工程师或研究人员,以及从事工业视觉测量与自动化检测领域的技术人员。 使用场景及目标:①学习如何使用C#HALCON实现高精度工业视觉测量系统的开发;②掌握边缘提取、抗差拟合、3D点云处理等核心技术的具体实现方法;③了解工业部署中的关键技术,如GPU加速、EtherCAT同步控制、实时数据看板等;④探索基于深度学习量子计算的前沿技术在工业视觉中的应用。 其他说明:本文不仅提供了详细的理论分析技术实现,还附有完整的代码示例实验数据,帮助读者更好地理解实践。同时,文中提到的硬件选型、校准方法、精度验证等内容,为实际项目实施提供了重要参考。文章最后还给出了未来的技术演进方向开发者行动建议,如量子-经典混合计算、自监督学习等,以及参与HALCON官方认证开源社区的建议。
内容概要:本文介绍了基于WOA-GRU-Attention模型的时序数据分类预测项目,旨在提升时序数据分类准确率,实现智能优化,并提供强泛化能力的分类框架。项目背景指出传统机器学习方法难以处理时序数据的复杂特性,而GRU、注意力机制WOA的结合能有效应对这些问题。文章详细描述了项目的目标与意义,包括提升分类准确率、实现智能优化、推动元启发式算法的应用等。同时,文中列出了项目面临的挑战及解决方案,如高维数据特征复杂、超参数调优难度大等。项目模型架构由WOA、GRU注意力机制三部分组成,通过Python代码示例展示了模型的具体实现,包括模型定义、训练过程WOA优化算法的核心步骤。; 适合人群:具备一定编程基础,尤其是对深度学习、时序数据分析感兴趣的开发者研究人员。; 使用场景及目标:① 提升时序数据分类准确率,特别是在金融、医疗、智能制造等领域;② 实现模型训练过程的智能优化,避免传统调参的局限;③ 提供具备强泛化能力的时序数据分类框架,支持多行业多场景应用;④ 推动高性能时序模型的工业应用落地,提高智能系统的响应速度决策质量。; 其他说明:项目不仅实现了工程应用,还在理论层面对GRU结构与注意力机制的融合进行了系统分析,结合WOA优化过程对模型训练动力学展开研究,促进了深度学习与优化算法交叉研究领域的发展。读者可以通过提供的代码示例链接进一步了解项目的具体实现应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值