hdu 1565 方格取数(1)(状态压缩dp)

本文介绍了一种解决方格取数问题的动态规划算法,旨在从n*n棋盘中选取若干非相邻格子内的非负数,使它们的和最大。通过分析合法状态和冲突判断,实现了高效的求解。

方格取数(1)

                                                                Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
给你一个n*n的格子的棋盘,每一个格子里面有一个非负数。
从中取出若干个数,使得随意的两个数所在的格子没有公共边。就是说所取的数所在的2个格子不能相邻,而且取出的数的和最大。
 

Input
包含多个測试实例,每一个測试实例包含一个整数n 和n*n个非负数(n<=20)
 

Output
对于每一个測试实例,输出可能取得的最大的和
 

Sample Input

   
3 75 15 21 75 15 28 34 70 5
 

Sample Output

   
188
 


分析:dp[i][j]表示前i行,第i行取第j个状态时的取值总和。则dp[i][j] = max(dp[i][j], dp[i-1][k] + sum[i][j]).当中sum[i][j]表示第i行取第j个状态的取值总和。

由于n<=20。经计算能够发现,合法状态最多有17711个。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 21;
const int M = 17720; //合法状态最多有17711个
int n, p;
int a[N][N];
int dp[N][M];
int s[M];
int sum[N][M];

bool checkA(int x) {  //推断本行状态是否冲突
    return !(x & (x >> 1));
}

bool checkB(int x, int y) { //推断本行和上一行是否冲突
    return !(x & y);
}

int get_sum(int r, int state) {  //求第i行状态为state时的取值总和
    int res = 0;
    for(int i = 0; i < n; i++)
        if((state >> i) & 1)
            res += a[r][n - 1 - i];
    return res;
}

void Init() {
    p = 0;
    memset(sum, 0, sizeof(sum));

    for(int i = 0; i < (1 << n); ++i) //求出全部合法状态
        if(checkA(i))
            s[p++] = i;

    for(int i = 0; i < n; ++i) {  //求第i行取第j个状态时的取值总和
        for(int j = 0; j < p; ++j) {
            sum[i][j] = get_sum(i, s[j]);
        }
    }
}

void solve() {
    memset(dp, 0, sizeof(dp));
    for(int i = 0; i < p; i++)
        dp[0][i] = sum[0][i];

    for(int i = 1; i < n; i++) { //行数
        for(int j = 0; j < p; j++) { //本行状态
            for(int k = 0; k < p; k++) { //上一行的状态
                if(checkB(s[j], s[k])) {
                    dp[i][j] = max(dp[i][j], dp[i-1][k] + sum[i][j]);
                }
            }
        }
    }

    int ans = dp[n-1][0];
    for(int i = 1; i < p; i++)
        if(ans < dp[n-1][i])
            ans = dp[n-1][i];
    printf("%d\n", ans);
}

int main() {
    while(~scanf("%d", &n)) {
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                scanf("%d", &a[i][j]);
        Init();
        solve();
    }
    return 0;
}


### HDU1565 方格 动态规划 解题思路 对于给定的一个 \( n \times n \) 的棋盘,其中每个格子内含有一个非负值。目标是从这些格子里选一些,使得任何两个被选中的所在的位置没有公共边界(即它们不是上下左右相邻),并且使选出的之和尽可能大。 #### 构建状态转移方程 为了实现这一目的,可以定义二维组 `dp` 来存储到达某位置的最大累积值: - 设 `dp[i][j]` 表示当考虑到第 i 行 j 列时能够获得的最大价值。 初始化阶段,设置第一行的据作为基础情况处理;之后通过遍历整个矩阵来更新每一个可能的状态。具体来说,在计算某个特定单元 `(i, j)` 处的结果之前,应该先考察其上方以及左上角、右上角三个方向上的元素是否已经被访问过,并据此调整当前节点所能达到的最佳得分[^1]。 ```cpp for (int i = 0; i < N; ++i){ for (int j = 0; j < M; ++j){ dp[i][j] = grid[i][j]; // 上面一排的情况 if(i > 0 && !conflict(i,j,i-1,j)) dp[i][j] = max(dp[i][j], dp[i-1][j] + grid[i][j]); // 左斜线方向 if(i > 0 && j > 0 && !conflict(i,j,i-1,j-1)) dp[i][j] = max(dp[i][j], dp[i-1][j-1] + grid[i][j]); // 右斜线方向 if(i > 0 && j+1 < M && !conflict(i,j,i-1,j+1)) dp[i][j] = max(dp[i][j], dp[i-1][j+1] + grid[i][j]); } } ``` 这里需要注意的是冲突检测函 `conflict()` ,用于判断两格之间是否存在直接连接关系。如果存在,则不允许同时选择这两格内的字相加到路径之中去。 #### 寻找最优解 最终的答案将是最后一行中所有列的最大值之一,因为这代表了从起点出发直到终点结束可以获得的最大收益。可以通过简单的循环找到这个最大值并返回它作为结果输出。 ```cpp // 找到最后一行的最大值 __int64 result = 0; for(int col = 0; col < M; ++col) { result = max(result, dp[N-1][col]); } cout << "Maximum sum is: " << result << endl; ``` 上述方法利用了动态规划的思想有效地解决了该问题,时间复杂度大约为 O(n*m),空间复杂度同样决于输入规模大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值