1028 - Carl the Ant

本文介绍了一个模拟蚂蚁行走路径的算法挑战。特别关注一只名为Carl的独特蚂蚁,它以非直线方式移动,而其他蚂蚁遵循其留下的化学轨迹。文章详细说明了输入格式、输出格式及示例,并提供了完整的C语言代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Ants leave small chemical trails on the ground in order to mark paths for other ants to follow. Ordinarily these trails follow rather straight lines. But in one ant colony there is an ant named Carl, and Carl is not an ordinary ant. Carl will often zigzag for no apparent reason, sometimes crossing his own path numerous times in the process. When other ants come to an intersection, they always follow the path with the strongest scent, which is the most recent path that leads away from the intersection point.

Ants are 1 centimeter long, move and burrow at 1 centimeter per second, and follow their paths exactly (bending at right angles when moving around corners). Ants cannot cross or overlap each other. If two ants meet at the exact same instant at an intersection point, the one that has been on Carl's path the longest has the right of way; if they don't arrive at the same time at the intersection point, the ant that has been waiting the longest at the intersection will move first.

Carl burrows up from the ground to start at the origin at time 0. He then walks his path and burrows back down into the ground at the endpoint. The rest of the ants follow at regular intervals. Given the description of Carl's path and when the other ants start the path, you are to determine how long it takes the entire set of ants to finish burrowing back into the ground. All the ants are guaranteed to finish.

 

Input 

Input consists of several test cases. The first line of the input file contains a single integer indicating the number of test cases .

The input for each test case starts with a single line containing three positive integers n ( 1$ \le$n$ \le$50), m1$ \le$m$ \le$100), and d ( 1$ \le$d$ \le$100). Here, n is the number of line segments in Carl's path, m is the number of ants traveling the path (including Carl), and d is the time delay before each successive ant's emergence. Carl (who is numbered 0) starts at time 0. The next ant (ant number 1) will emerge at time d, the next at time 2d, and so on. If the burrow is blocked, the ants will emerge as soon as possible in the correct order.

Each of the next n lines for the test case consists of a unique integer pair x y ( -100$ \le$xy$ \le$100), which is the endpoint of a line segment of Carl's path, in the order that Carl travels. The first line starts at the origin (0,0) and the starting point of every subsequent line is the endpoint of the previous line.

For simplicity, Carl always travels on line segments parallel to the axes, and no endpoints lie on any segment other than the ones which they serve as an endpoint. Input line segments will only intersect orthogonally. Every pair of segments can have at most one common point. The common point will be strictly inside both segments.

 

Output 

The output for each case is described as follows:

 

 


Case C:

Carl finished the path at time t1

The ants finished in the following order:

a1a2a3...am

The last ant finished the path at time t2

 

 


Here, C is the case number (starting at 1), a1a2a3,..., am are the ant numbers in the order that they go back underground, and t1 and t2 are the times (in seconds) at which Carl and the last ant finish going underground. You should separate consecutive cases with a single blank line.

 

Sample Input 

2
4 7 4
0 4
2 4
2 2
-2 2
4 7 2
0 4
2 4
2 2
-2 2

 

Sample Output 

Case 1:
Carl finished the path at time 13
The ants finished in the following order:
0 2 1 3 4 5 6
The last ant finished the path at time 29

Case 2:
Carl finished the path at time 13
The ants finished in the following order:
0 4 1 5 2 6 3
The last ant finished the path at time 19

 




 

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
struct info
{
	int x,y,len,wait,dir;
};
const int MaxN=50;
const int MaxM=100;
const int MaxL=250;
const int Add[4][2]={-1,0,0,1,1,0,0,-1};
int N,cases,n,m,D,Rs,fin,sta,T,ex,ey;
int route[MaxN*MaxL];
int map[MaxL+1][MaxL+1];
int ants[MaxL+1][MaxL+1][4];
int list[MaxM];
info ant[MaxM];

void init()
{
	int i,j,k,t,x1,y1,x2,y2;
	scanf("%d%d%d",&n,&m,&D);
	x1=0;y1=0;Rs=0;
	for(i=0;i<n;i++)
	{
		scanf("%d%d",&x2,&y2);
		if(x1>x2) t=0;
		if(y1<y2) t=1;
		if(x1<x2) t=2;
		if(y1>y2) t=3;
		for(;x1!=x2||y1!=y2;)
		{
			route[Rs]=t;
			Rs++;
			x1+=Add[t][0];
			y1+=Add[t][1];
		}
	}
	fin=0;sta=0;
	for(i=0;i<=MaxL;i++)
		for(j=0;j<=MaxL;j++)
			for(k=0;k<4;k++)
				ants[i][j][k]=-1;
}

void work()
{
	bool ok;
	int i,j,x,y,d,p,tmp;
	int go[MaxM];
	memset(go,0,sizeof(go));
	ok=0;
	for(i=0;i<sta;i++) if(ant[i].x<0) ok++;
	for(i=0;i<sta;i++) if(ant[i].x>=0)
	{
		x=ant[i].x;y=ant[i].y;
		for(j=0;j<4;j++) if(ants[x][y][j]>=0)
		{
			tmp=ants[x][y][j];
			if(ant[tmp].wait>ant[i].wait || (ant[tmp].wait==ant[i].wait && ant[tmp].len>ant[i].len))
			{
				p=1;go[i]=1;ok++;
				break;
			}
		}
	}

	do{
		ok=0;
		for(i=0;i<sta;i++) if(!go[i] && ant[i].x>0)
		{
			d=map[ant[i].x][ant[i].y];
			x=ant[i].x+Add[d][0];y=ant[i].y+Add[d][1];
			if(ants[x][y][d]>=0&&go[ants[x][y][d]]==1)
			{
				go[i]=1;ok=1;
				continue;
			}
		}
	}while(ok);

	for(i=0;i<sta;i++) 
		if(!go[i]&&ant[i].x>=0)
		{
			ant[i].len++;ant[i].wait=0;
			ants[ant[i].x][ant[i].y][ant[i].dir]=-1;
		}
		else if(ant[i].x>=0)
			ant[i].wait++;
	for(i=0;i<sta;i++)
		if(!go[i]&&ant[i].x>=0)
		{
			x=ant[i].x;y=ant[i].y;
			if(x==100&&y==100&&i!=sta-1)
			{
				ants[100][100][map[100][100]]=i+1;
			}
			d=map[x][y];
			ant[i].x+=Add[d][0];ant[i].y+=Add[d][1];ant[i].dir=d;
			if(ant[i].x==ex&&ant[i].y==ey)
			{
				list[fin]=i;
				fin++;
				ant[i].x=-1;
			}
			else
				ants[ant[i].x][ant[i].y][d]=i;
		}
}

void write()
{
	int i;
	printf("Case %d:\n",cases);
	printf("Carl finished the path at time %d\n",ant[0].len+1);
	printf("The ants finished in the following order:\n");
	printf("%d",list[0]);
	for(i=1;i<m;i++)
		printf(" %d",list[i]);
	printf("\n");
	printf("The last ant finished the path at time %d\n",T+1);
	if(cases<N)
		printf("\n");
}

int main()
{
	int X,Y;
	scanf("%d",&N);
	for(cases=1;cases<=N;cases++)
	{
		init();
		X=100;Y=100;ex=-1;ey=-1;
		for(T=0;fin<m;T++)
		{
			if(T<Rs)
			{
				map[X][Y]=route[T];
				X+=Add[route[T]][0];Y+=Add[route[T]][1];
				if(T==Rs-1)
				{
					ex=X;ey=Y;
				}
			}
			if(T%D==0&&sta<m)
			{
				if(ants[100][100][map[100][100]]) ants[100][100][map[100][100]]=sta;
				ant[sta].x=100;ant[sta].y=100;
				ant[sta].len=0;ant[sta].wait=0;ant[sta].dir=map[100][100];
				sta++;
			}
			work();
		}
		write();
	}
	return 0;
}


 

 

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值