『字符合并 区间dp 状压dp』


字符合并

Description

有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数。得到的新字符和分数由这 k 个字符确定。你需要求出你能获得的最大分数。

Input Format

第一行两个整数n,k。接下来一行长度为n的01串,表示初始串。

接下来2^k行,每行一个字符ci和一个整数wi,ci表示长度为k的01串连成二进制后按从小到大顺序得到的第i种合并方案得到的新字符,wi表示对应的第i种方案对应获得的分数。

1<=n<=300,0<=ci<=1,wi>=1,k<=8

Output Format

输出一个整数表示答案

Sample Input

3 2
101
1 10
1 10
0 20
1 30

Sample Output

40

解析

首先,我们很容易想到区间\(dp\)\(f[l][r]\)代表合并区间\([l,r]\)的最大分数。但是这样记录状态好像不太好,因为区间合并后还会留下一些字符,这些字符还会产生一些价值。

如果考虑可以合并就合并的话,我们发现一个区间的剩余字符数不会超过\(k\)个,\(k\leq 8\)

那就考虑状态压缩:\(f[l][r][S]\)代表合并区间\([l,r]\),得到字符集\(S\)的最大价值。然后我们就考虑用区间\(dp\)的框架来执行转移。首先,我们一定要枚举一个断点,然后合并两个区间。但是现在我们状态中还有一个\(S\),难道再枚举两个\(S_1,S_2\)来合并吗?

这样时间复杂度肯定是承受不了的。有一种更好的转移方式就是每次只考虑断点右边的区间合并成原区间状态\(S\)中的最后一个字符,这样同样可以做到更新不存在遗漏。

那么我们根据这样的方式转移即可:\(1.\) 执行通过子区间合并的转移。 \(2.\) 当区间长度可以合并时,执行计算合并贡献的转移。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int N = 302 , K = 8;
const long long INF = 0x3f3f3f3f;
int n,k,a[N],c[1<<K];
long long w[1<<K],f[N][N][1<<K];
inline void input(void)
{
    scanf("%d%d",&n,&k);
    for (int i=1;i<=n;i++)
        scanf("%1d",&a[i]);
    for (int i=0;i<1<<k;i++)
        scanf("%d%lld",&c[i],&w[i]);
}
inline void DynamicProgram(void)
{
    memset( f , 0xcf , sizeof f );
    for (int i=1;i<=n;i++) f[i][i][a[i]] = 0;
    for (int len=2;len<=n;len++)
        for (int l=1,r;(r=l+len-1)<=n;l++)
        {
            int L = (len-1) % (k-1);
            if ( L == 0 ) L = k-1;
            for (int mid=r-1;mid>=l;mid-=k-1)
                for (int S=0;S<1<<L;S++)
                    f[l][r][S<<1] = max( f[l][r][S<<1] , f[l][mid][S] + f[mid+1][r][0] ),
                    f[l][r][S<<1|1] = max( f[l][r][S<<1|1] , f[l][mid][S] + f[mid+1][r][1] );
            if ( L == k-1 )
            {
                long long g[2] = {-INF,-INF};
                for (int S=0;S<1<<k;S++)
                    g[c[S]] = max( g[c[S]] , f[l][r][S] + w[S] );
                f[l][r][0] = g[0] , f[l][r][1] = g[1];
            }
        }
}
int main(void)
{
    input();
    DynamicProgram();
    long long ans = -INF;
    for (int S=0;S<1<<k;S++)
        ans = max( ans , f[1][n][S] );
    printf("%lld\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/Parsnip/p/11520358.html

内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置和服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具和服务,包括Edge Software Provisioner (ESP),用于构建和缓存操作系统镜像和软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建和管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井和移动医院)下的具体部署步骤和技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换和备份等关键操作。 适合人群:具备一定IT基础设施和边缘计算基础知识的技术人员,特别是负责边缘设备部署和管理的系统集成商和运维人员。 使用场景及目标:①帮助系统集成商和客户简化边缘设备的初始配置和后续管理;②确保设备在不同网络环境下的安全启动和注册;③支持大规模边缘设备的自动化集群管理和应用程序编排;④提供详细的密钥管理和集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性和扩展性的考虑,帮助用户全面理解和实施Intel的边缘计算解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值