hdu 2669(扩展欧几里得)

本文介绍了一种通过扩展欧几里得算法解决特定数学问题的方法:对于给定的两个非负整数a和b,找到非负整数X和整数Y,使得X*a + Y*b = 1成立。如果不存在这样的解,则输出sorry。文章提供了完整的C++代码实现。

Romantic

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4400    Accepted Submission(s): 1852


Problem Description
The Sky is Sprite.
The Birds is Fly in the Sky.
The Wind is Wonderful.
Blew Throw the Trees
Trees are Shaking, Leaves are Falling.
Lovers Walk passing, and so are You.
................................Write in English class by yifenfei



Girls are clever and bright. In HDU every girl like math. Every girl like to solve math problem!
Now tell you two nonnegative integer a and b. Find the nonnegative integer X and integer Y to satisfy X*a + Y*b = 1. If no such answer print "sorry" instead.
 

 

Input
The input contains multiple test cases.
Each case two nonnegative integer a,b (0<a, b<=2^31)
 

 

Output
output nonnegative integer X and integer Y, if there are more answers than the X smaller one will be choosed. If no answer put "sorry" instead.
 

 

Sample Input
77 51 10 44 34 79
 

 

Sample Output
2 -3 sorry 7 -3
 
题解:由ax+by = gcd(a,b) 当 a,b互素是才会有解。然后X要是尽量小的正数,假设我们得到的是 X0 ,在有解的情况下方程ax+by=c的通解为 {X0*(c/d)+k*b/gcd(a,b)} (k = ..-2,-1,0,1,2..)
所以我们可以得到在最小的X为 (X0%b+b)%b.代入得Y
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long LL;

LL extend_gcd(LL a,LL b,LL &x,LL &y){
    if(!b){
        x=1,y = 0;
        return a;
    }else{
        LL x1,y1;
        LL d = extend_gcd(b,a%b,x1,y1);
        x = y1;
        y = x1 - a/b*y1;
        return d;
    }
}
int main()
{
    LL a,b,x,y;
    while(~scanf("%lld%lld",&a,&b)){
        LL d = extend_gcd(a,b,x,y);
        if(d!=1){
            printf("sorry\n");
        }else{
            x = (x%b+b)%b;
            y = (1-a*x)/b;
            printf("%lld %lld\n",x,y);
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/liyinggang/p/5528236.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值