HDU4389:X mod f(x)(数位DP)

本文探讨了在给定区间内计算满足特定条件的数字数量的算法,即那些其各位数字之和能整除该数字的数。通过预处理和动态规划的方法,有效地解决了这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Here is a function f(x):
   int f ( int x ) {
       if ( x == 0 ) return 0;
       return f ( x / 10 ) + x % 10;
   }

Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 10 9), how many integer x that mod f(x) equal to 0.
 

 

Input
The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
Each test case has two integers A, B.
 

 

Output
For each test case, output only one line containing the case number and an integer indicated the number of x.
 

 

Sample Input
2 1 10 11 20
 

 

Sample Output
Case 1: 10 Case 2: 3
 


题意:计算区间内一个数字各位之和能整除该数字的个数

思路:

分别计算出[1, b]中符合条件的个数和[1, a-1]中符合条件的个数。

d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数,那么就有方程

d[l+1][i+x][j][(k*10+x)%j] += d[l][i][j][k]

预处理出d[l][i][j][k],然后再逐位统计即可

 

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

int bit[10];
int dp[10][82][82][82];
//d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数
void set()
{
    int i,j,k,l,x;
    for(i = 1; i<=81; i++)
        dp[0][0][i][0] = 1;
    for(l = 0; l<9; l++)
        for(i = 0; i<=l*9; i++)
            for(j = 1; j<=81; j++)
                for(k = 0; k<j; k++)
                    for(x = 0; x<=9; x++)
                        dp[l+1][i+x][j][(k*10+x)%j] += dp[l][i][j][k];
}

int solve(int n)
{
    if(!n)
        return 0;
    int ans,i,j,k,len;
    int sum,tem1,tem2,s,bit[10],r;
    len = sum = ans = 0;
    tem1 = tem2 = n;
    s = 1;
    while(tem1)
    {
        bit[++len] = tem1%10;
        tem1/=10;
        sum+=bit[len];//每位数之和
    }
    if(n%sum==0)//本身要先看是否整除
        ans++;
    for(i = 1; i<=len; i++)
    {
        sum-=bit[i];//将该位清0
        tem2/=10;
        s*=10;
        tem1 = tem2*s;
        for(j = 0; j<bit[i]; j++) //枚举该位的状况
        {
            for(k = sum+j; k<=sum+j+9*(i-1); k++) //该位与更高位的和,而比该位低的和择优9*(i-1)种
            {
                if(!k)//和为0的状况不符合
                    continue;
                r = tem1%k;//现在该数对各位和进行取余
                if(r)
                    r = k-r;//余数大于0,那么k-dd得到的数肯定能被t整除
                ans+=dp[i-1][k-sum-j][k][r];//加上个数
            }
            tem1+=s/10;//标记现在算到哪里,例如1234,一开始t是1230,然后1231,1232,1233,1234,接下来1200,就是1210,1220,1230
        }
    }
    return ans;
}

int main()
{
    int T,l,r,cas = 1;
    set();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&l,&r);
        printf("Case %d: %d\n",cas++,solve(r)-solve(l-1));
    }

    return 0;
}


 

 

 

转载于:https://www.cnblogs.com/james1207/p/3265267.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值