题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某一个数加上x
2.求出某区间每一个数的和
输入格式
第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3个整数,表示一个操作,具体如下:
操作1: 格式:1 x k 含义:将第x个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式
输出包含若干行整数,即为所有操作2的结果。
输入输出样例
输入 #1复制
5 5 1 5 4 2 3 1 1 3 2 2 5 1 3 -1 1 4 2 2 1 4
输出 #1复制
14 16
说明/提示
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
故输出结果14、16
单点 修改,区间查询
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=500005;
int n,m;
int a[N];
int lowbit(int l){return l&(-l);}
void update(int l,int u){//读入操作
for(;l<=n;l+=lowbit(l)){
a[l]+=u;
}
}
int sum(int k){//前缀求和
int an=0;
for(;k;k-=lowbit(k)){
an+=a[k];
}
return an;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
int u;
scanf("%d",&u);
update(i,u);
}
//for(int i=1;i<=n;i++){
// printf("%d ",a[i]);
//}
//printf("\n");
for(int i=1;i<=m;i++){
int p,k,l;
scanf("%d%d%d",&p,&k,&l);
if(p==1){
for(int j=k;j<=n;j+=lowbit(j)){
a[j]+=l;
}
}
else{
printf("%d\n",sum(l)-sum(k-1));//将l-r的区间理解为r的前缀和减去(l-1)的前缀和
}
}
return 0;
}