bzoj3407 [Usaco2009 Oct]Bessie's Weight Problem 贝茜的体重问题

 

Description

    贝茜像她的诸多姊妹一样,因为从约翰的草地吃了太多美味的草而长出了太多的赘肉.所以约翰将她置于一个及其严格的节食计划之中.她每天不能吃多过H(5≤日≤45000)公斤的干草.贝茜只能吃一整捆干草;当她开始吃一捆干草的之后就再也停不下来了.她有一个完整
的N(1≤N≤500)捆可以给她当作晚餐的干草的清单.她自然想要尽量吃到更多的干草.很自然地,每捆干草只能被吃一次(即使在列表中相同的重量可能出现2次,但是这表示的是两捆干草,其中每捆干草最多只能被吃掉一次).
    给定一个列表表示每捆干草的重量Si(1≤Si≤H),求贝茜不超过节食的限制的前提下可以吃掉多少干草(注意一旦她开始吃一捆干草就会把那一捆干草全部吃完).

Input

    第1行:两个由空格隔开的整数日和N.
    第2到第N+1行:第i+l行是一个单独的整数,表示第i捆干草的重量Si.

Output

 
    一个单独的整数表示贝茜在限制范围内最多可以吃多少公斤的干草.

Sample Input

56 4
15
19
20
21

Sample Output

56

HINT

    有四捆草,重量分别是15,19,20和21.贝茜在56公斤的限制范围内想要吃多少就可以吃多少.


    贝茜可以吃3捆干草(重量分别为15,20,21).恰好达到她的56公斤的限制.


 

你看我刷水多快啊

背包dp不解释

#include<cstdio>
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int h,n;
int a[510];
bool f[50010];
int main()
{
	scanf("%d%d",&h,&n);
	for (int i=1;i<=n;i++) a[i]=read();
	f[0]=1;
	for (int i=1;i<=n;i++)
	  for (int j=h;j>=a[i];j--)
	    f[j]|=f[j-a[i]];
	for (int i=h;i;i--)
	  if (f[i])
	  {
	  	printf("%d",i);
	  	return 0;
	  }
}

  

转载于:https://www.cnblogs.com/zhber/p/4035949.html

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值