//POJ 1811
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <time.h>
using namespace std;
typedef __int64 lld;
lld ran() {
return rand() << 16 | rand();
}
lld gcd(lld a, lld b) {
return !b ? a : gcd(b, a % b);
}
inline void add(lld &x, lld ad, lld mod) {
x += ad;
if (x >= mod) x -= mod;
}
lld mul_mod(lld a, lld b, lld mod) {
lld ret = 0;
while (b) {
if (b & 1) {
add(ret, a, mod);
}
b >>= 1; add(a, a, mod);
}
return ret;
}
lld pow_mod(lld x, lld n, lld mod) {
lld ret = 1 % mod;
while (n) {
if (n & 1) {
ret = mul_mod(ret, x, mod);
}
n >>= 1; x = mul_mod(x, x, mod);
}
return ret;
}
bool test(lld n, lld b) {
lld m = n - 1;
int counter = 0;
while (~m & 1) {
m >>= 1;
counter ++;
}
lld ret = pow_mod(b, m, n);
if (ret == 1 || ret == n - 1) {
return true;
}
counter --;
while (counter >= 0) {
ret = mul_mod(ret, ret, n);
if (ret == n - 1) {
return true;
}
counter --;
}
return false;
}
const int BASE[12] = {2,3,5,7,11,13,17,19,23,29,31,37};
bool is_prime(lld n) {
if (n < 2) {
return false;
}
if (n < 4) {
return true;
}
if (n == 3215031751LL) {
return false;
}
for (int i = 0; i < 12 && BASE[i] < n; i++) {
if (!test(n, BASE[i])) {
return false;
}
}
return true;
}
lld pollard_rho(lld n, lld seed) {
lld x, y, head = 1, tail = 2;
x = y = ran() % (n - 1) + 1;
while (true) {
x = mul_mod(x, x, n);
add(x, seed, n);
if (x == y) {
return n;
}
lld d = gcd(x > y ? x - y : y - x, n);
if (1 < d && d < n) {
return d;
}
head ++;
if (head == tail) {
y = x;
tail <<= 1;
}
}
}
vector <lld> divisors;
void factorize(lld n) {
if (n > 1) {
if (is_prime(n)) {
divisors.push_back(n);
}else {
lld d = n;
while (d >= n) {
d = pollard_rho(n, ran() % (n - 1) + 1);
}
factorize(n / d);
factorize(d);
}
}
}
int main() {
//srand(time(NULL));
int T;
scanf("%d", &T);
for (int cas = 1; cas <= T; cas++) {
lld x;
scanf("%I64d", &x);
if (is_prime(x)) {
printf("Prime\n");
}else {
divisors.clear();
factorize(x);
sort(divisors.begin(), divisors.end());
printf("%I64d\n", divisors[0]);
}
}
return 0;
}