跳石头(NOIP2015) (二分查找)

本文介绍了一道结合ZKW线段树与二分查找算法的有趣题目。通过对题目的分析,作者使用二分查找确定了一个最优解,并通过暴力检查验证了解的正确性。最后给出了实现这一解决方案的具体C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题传送门

好久没更了。。昨天去学zkw线段树,被zxyer狠狠地D了一顿。、

来补坑。。

这是一道很奇特的题目。

根据题目可以看出这道题有二分题具有的性质。。

不懂二分性质的可以看我以前的博客 传送门

所以。。

暴力check答案就好啦!

下面贴代码

#include<iostream> 
#include<cstdio> 
using namespace std; 
int a[50001]; 
int l,n,m; 
struct edge{ 
    int value,next; 
}b[50001]; 
int check(int x) 
{ 
    int num=0; 
    for(int i=1;i<=n+1;i++) 
    b[i].value=a[i],b[i].next=i-1; 
    for(int i=1;i<=n+1;i++) 
    if(b[i].value-b[b[i].next].value<x)num++,b[i+1].next=b[i].next; 
    return m>=num; 
} 
int main(){ 
    scanf("%d%d%d",&l,&n,&m); 
    for(int i=1;i<=n;i++) 
    scanf("%d",&a[i]); 
    a[n+1]=l; 
    int left=0,r=l,ans; 
    while(left<=r){ 
    int mid=(left+r)>>1; 
    if(check(mid))ans=mid,left=mid+1; 
    else r=mid-1;    
    } 
    printf("%d\n",ans); 
} 

 

转载于:https://www.cnblogs.com/ghostfly233/p/6882247.html

### NOIP 2015 提高组 石头 Python 解题思路 #### 动态规划求解最小踩石子数目 对于给定的独木桥长度以及青蛙跃距离范围,目标是最小化青蛙过河过程中踩到的石子数量。此问题可以通过动态规划来解决。 定义 `dp[i]` 表示到达第 `i` 块石子位置时所踩过的最少石子数[^3]。初始化数组 `dp` 的大小为石子总数加一,并设定初始值均为无穷大(表示不可达),除了起点外设为零因为起始处无任何代价。 遍历每一个可能作为新一步起点的位置 `i` 和每一块可至的新位置 `j` ,更新 `dp[j]` 。具体来说,在每次尝试从某一点跃向另一点的过程中,如果该次跃有效,则比较当前记录下的最优方案与此次新增路径哪个更优并据此调整: ```python import sys def min_stones(n, m, stones): INF = float('inf') # 初始化dp表 dp = [INF] * n dp[0] = 0 for i in range(m): # 对于每一颗石子 for j in range(i + 1, n): # 尝试跃到后面所有的石子上去 distance = abs(stones[j] - stones[i]) if L >= distance >= D and dp[i] != INF: dp[j] = min(dp[j], dp[i] + 1) return min([val for idx,val in enumerate(dp) if stones[idx]>=L]) if any(stones>=L for stones in stones[m:]) else "无法完成" n, l, d, m = map(int, input().split()) stones_position = list(map(int, input().strip().split())) print(min_stones(n, l, d, m)) ``` 上述代码实现了基于动态规划算法计算最短路径的思想,其中 `min_stones()` 函数接收四个参数分别为:总共有多少块石子、独木桥全长、允许的最大单步跨度、已知存在几块固定不动的大石子;而输入部分则提供了这些数据的具体数值形式供调用者传入实际测试案例使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值