参考网址:http://blog.youkuaiyun.com/nieson2012/article/details/51314873
http://blog.youkuaiyun.com/suipingsp/article/details/41927247
决策树学习:根据数据的属性采用树状结构建立决策模型。决策树模型常常用来解决分类和回归问题。常见的算法包括 CART (Classification And Regression Tree)、ID3、C4.5、随机森林 (Random Forest) 等。
决策树是附加概率结果的一个树状的决策图,是直观的运用统计概率分析的图法。机器学习中决策树是一个预测模型,它表示对象属性和对象值之间的一种映射,树中的每一个节点表示对象属性的判断条件,其分支表示符合节点条件的对象。树的叶子节点表示对象所属的预测结果。构造决策树的过程本质上就是根据数据特征将数据集分类的递归过程,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。
一棵决策树的生成过程主要分为以下3个部分:
1.特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。
2.决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。
3.剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。
划分数据集的最大原则是:使无序的数据变的有序。
信息熵:在概率论中,信息熵给了我们一种度量不确定性的方式,是用来衡量随机变量不确定性的,熵就是信息的期望值。若待分类的事物可能划分在N类中,分别是x1,x2,……,xn,每一种取到的概率分别是P1,P2,……,Pn,那么X的熵就定义为:
,从定义中可知:0≤H(X)≤log(n)
当随机变量只取两个值时,即X的分布为 P(X=1)=p,X(X=0)=1−p,0≤p≤1则熵为:H(X)=−plog2(p)−(1−p)log2(1−p)。
熵值越高,则数据混合的种类越高,其蕴含的含义是一个变量可能的变化越多它携带的信息量就越大。