题目:Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
For example,
1
/ \
2 3
The root-to-leaf path 1->2 represents the number 12. The root-to-leaf path 1->3 represents the number 13.
Return the sum = 12 + 13 = 25.
解析1:遍历出树的所有路径,然后将这些路径的和相加,该解析方法和 path sum ii 那道题目解析2方法很像(http://blog.youkuaiyun.com/weishenmetlc/article/details/61209222),因为都要遍历出所有路径, 代码如下:
// 递归法,时间复杂度 O(n),空间复杂度 O(logn)
class Solution {
public:
int sumNumbers(TreeNode* root) {
int sum = 0;
int tmp = 0;
sumNumbers(root, tmp, sum);
return sum;
}
private:
void sumNumbers(TreeNode* root, int& tmp, int& sum) {
if (!root) return;
tmp = tmp * 10 + root -> val;
if (!root -> left && !root -> right)
sum += tmp;
sumNumbers(root -> left, tmp, sum);
sumNumbers(root -> right, tmp, sum);
tmp /= 10;
}
};
解析2:先求出从根节点到其左子树的所有路径和,再求出从根节点到其右子树的所有路径和,相比如解析1, 该方法更易理解,代码如下:
下面代码的思想及编写参考了网址https://github.com/soulmachine/leetcode#leetcode题解题目
// 递归法,时间复杂度 O(n),空间复杂度 O(logn)
class Solution {
public:
int sumNumbers(TreeNode* root) {
return dfs(root, 0);
}
private:
int dfs(TreeNode* root, int sum) {
if (!root) return 0;
if (!root -> left && !root -> right)
return 10 * sum + root -> val;
return dfs(root -> left, sum * 10 + root -> val) +
dfs(root -> right, sum * 10 + root -> val);
}
};