O2O:Offline–Online Actor–Critic

IEEE TAI 2024
paper

1 Introduction

一篇offline to online 的文章,有效解决迁移过程出现的performance drop。所提出的O2AC算法首先在离线阶段添加一项BC惩罚项,用于限制策略靠近专家策略;而在在线微调阶段,通过动态调整BC的权重,缓解performance drop。

2 Method

2.1 offline

离线阶段,采用BC结合确定性策略优化方法。最大化下列损失函数:
J o f f i n e ( θ ) = E ( s , a ) ∼ B [ ζ Q ϕ ( s , π θ ( s ) ) − ∥ π θ ( s ) − a ∥ 2 ] J_{\mathrm{offine}}(\boldsymbol{\theta})=\mathbb{E}_{(\boldsymbol{s},\boldsymbol{a})\sim\mathcal{B}}\left[\zeta Q_{\boldsymbol{\phi}}(\boldsymbol{s},\pi_{\boldsymbol{\theta}}(\boldsymbol{s}))-\left\|\pi_{\boldsymbol{\theta}}(\boldsymbol{s})-\boldsymbol{a}\right\|^2\right] Joffine(θ)=E(s,a)B[ζQϕ(s,πθ(s))πθ(s)a2]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值