牛客题解 | 使用梯度下降的线性回归

题目

题目链接

梯度下降在机器学习中是一种常用的优化算法,用于求解最小化损失函数的问题。其具体步骤如下:

1. 初始化参数

  • 创建一个与输入矩阵 X X X 和输出矩阵 y y y 相关的矩阵 w w w
  • 数学表达式为:
    w = 0 w = 0 w=0
本题初始化参数为0,但在实际使用中更常见的是使用随机初始化。

2. 计算梯度

  • 计算损失函数 L L L 对参数 w w w 的梯度 g g g
  • 数学表达式为:
    g = ∇ L ( w ) g = \nabla L(w) g=L(w)
本题使用的损失函数为均方误差,即:

L ( w ) = 1 2 m ∑ i = 1 m ( h ( x i ) − y i ) 2 L(w) = \frac{1}{2m} \sum_{i=1}^{m} (h(x_i) - y_i)^2

练习赛142是一场编程竞赛,通常包含多个算法题目,涵盖如数组、字符串、链表、动态规划等常见数据结构与算法知识点。针对这类比赛的解题思路和方法,可以从以下几个方面进行分析: ### 题目类型与解题策略 1. **数组相关问题** - 常见的题目包括查找数组中出现次数超过一半的数字、寻找缺失的数字、求解最大子数组和等。 - 解题方法包括使用哈希表统计频率、摩尔投票法(适用于多数元素问题)、双指针技巧或前缀和优化。 2. **链表操作** - 链表题目可能涉及反转链表、判断链表是否有环、找出两个链表的相交节点等。 - 例如,在找两个链表相交点的问题中,可以先计算各自长度,然后让长链表先走差值步数,再同步遍历比较节点地址[^3]。 3. **字符串处理** - 包括最长回文子串、无重复字符的最长子串等。 - 可采用滑动窗口、动态规划或中心扩展法等策略。 4. **树与图** - 树相关的题目可能涉及二叉树的遍历、路径和、最近公共祖先等问题。 - 图论问题可能需要使用深度优先搜索(DFS)、广度优先搜索(BFS)或拓扑排序等算法。 5. **动态规划** - 动态规划常用于解决背包问题、最长递增子序列、编辑距离等。 - 关键在于定义状态转移方程,并通过迭代或记忆化搜索进行求解。 6. **贪心算法** - 适用于区间调度、活动选择、硬币找零等问题。 - 贪心策略的核心在于每一步都做出局部最优选择。 ### 示例代码:摩尔投票法解决“多数元素”问题 ```python def majorityElement(nums): count = 0 candidate = None for num in nums: if count == 0: candidate = num count += (1 if num == candidate else -1) return candidate ``` 该算法时间复杂度为 O(n),空间复杂度为 O(1),非常适合处理大规模输入的数据集[^2]。 ### 提升解题能力的建议 - **刷题积累经验**:在 LeetCode、Codeforces、AtCoder 等平台上持续练习,熟悉各种题型。 - **学习经典算法**:掌握常见的算法模板,如二分查找、归并排序、快速选择等。 - **阅读官方题解与讨论区**:了解不同解法的优劣,尤其是最优解的时间复杂度分析。 - **模拟比赛训练**:定期参加在线编程比赛,提升实战能力和代码调试速度。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值