题目## 题目
解题思路
这是一个动态规划问题,但需要同时维护最大值和最小值,因为:
- 当遇到负数时,最小值乘以负数可能变成最大值
- 当遇到正数时,最大值乘以正数仍然是最大值
- 当遇到0时,需要重新开始计算
具体步骤:
- 维护两个 d p dp dp 数组: m a x D P maxDP maxDP 和 m i n D P minDP minDP
- m a x D P [ i ] maxDP[i] maxDP[i] 表示以 i i i 结尾的子数组的最大乘积
- m i n D P [ i ] minDP[i] minDP[i] 表示以 i i i 结尾的子数组的最小乘积
- 遇到新的数时,需要考虑三种情况:
- 当前数自己
- 当前数乘以之前的最大值
- 当前数乘以之前的最小值
代码
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int maxProduct(vector<int>& nums) {
int n = nums.size();
if(n == 0) return 0;
int maxDP = nums[0];
int minDP = nums[0];
int result = nums[0];
for(int i = 1; i < n; i++) {
int temp = maxDP;
maxDP = max({nums[i], maxDP * nums[i], minDP * nums[i]});
minDP = min({nums[i], temp * nums[i], minDP * nums[i]});
result = max(result, maxDP);
}
return result;
}
int main() {
int n;
cin >> n;
vector<int> nums(n);
for(int i = 0; i < n; i++) {
cin >> nums[i];
}
cout << maxProduct(nums) << endl;
return 0;
}
import java.util.Scanner;
public class Main {
public static int maxProduct(int[] nums) {
int n = nums.length;
if(n == 0) return 0;
int maxDP = nums[0];
int minDP = nums[0];
int result = nums[0];
for(int i = 1; i < n; i++) {
int temp = maxDP;
maxDP = Math.max(nums[i],
Math.max(maxDP * nums[i], minDP * nums[i]));
minDP = Math.min(nums[i],
Math.min(temp * nums[i], minDP * nums[i]));
result = Math.max(result, maxDP);
}
return result;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] nums = new int[n];
for(int i = 0; i < n; i++) {
nums[i] = sc.nextInt();
}
System.out.println(maxProduct(nums));
sc.close();
}
}
def max_product(nums):
if not nums:
return 0
max_dp = nums[0]
min_dp = nums[0]
result = nums[0]
for i in range(1, len(nums)):
temp = max_dp
max_dp = max(nums[i], max_dp * nums[i], min_dp * nums[i])
min_dp = min(nums[i], temp * nums[i], min_dp * nums[i])
result = max(result, max_dp)
return result
n = int(input())
nums = list(map(int, input().split()))
print(max_product(nums))
算法及复杂度
- 算法:动态规划
- 时间复杂度: O ( n ) \mathcal{O}(n) O(n),只需要遍历一次数组
- 空间复杂度: O ( 1 ) \mathcal{O}(1) O(1),只使用了常数个变量
解题思路
-
使用 K a d a n e Kadane Kadane 算法,维护两个变量:
- m a x S u m maxSum maxSum:记录全局最大和
- c u r r S u m currSum currSum:记录当前位置结尾的最大和
-
对于每个位置 i i i,有两种选择:
- 将当前数加入前面的子数组( c u r r S u m + n u m s [ i ] currSum + nums[i] currSum+nums[i])
- 从当前数开始新的子数组( n u m s [ i ] nums[i] nums[i])
-
每次更新 c u r r S u m currSum currSum 后,更新 m a x S u m maxSum maxSum
代码
#include <iostream>
#include <vector>
using namespace std;
int maxSubArray(vector<int>& nums) {
int maxSum = nums[0];
int currSum = nums[0];
for(int i = 1; i < nums.size(); i++) {
currSum = max(nums[i], currSum + nums[i]);
maxSum = max(maxSum, currSum);
}
return maxSum;
}
int main() {
int n;
cin >> n;
vector<int> nums(n);
for(int i = 0; i < n; i++) {
cin >> nums[i];
}
cout << maxSubArray(nums) << endl;
return 0;
}
import java.util.*;
public class Main {
public static int maxSubArray(int[] nums) {
int maxSum = nums[0];
int currSum = nums[0];
for(int i = 1; i < nums.length; i++) {
currSum = Math.max(nums[i], currSum + nums[i]);
maxSum = Math.max(maxSum, currSum);
}
return maxSum;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] nums = new int[n];
for(int i = 0; i < n; i++) {
nums[i] = sc.nextInt();
}
System.out.println(maxSubArray(nums));
}
}
def maxSubArray(nums):
maxSum = nums[0]
currSum = nums[0]
for i in range(1, len(nums)):
currSum = max(nums[i], currSum + nums[i])
maxSum = max(maxSum, currSum)
return maxSum
n = int(input())
nums = list(map(int, input().split()))
print(maxSubArray(nums))
算法及复杂度分析:
- 算法: K a d a n e Kadane Kadane 算法, d p dp dp 算法
- 时间复杂度: O ( n ) \mathcal{O}(n) O(n),只需要遍历一次数组
- 空间复杂度: O ( 1 ) \mathcal{O}(1) O(1),只使用了常数额外空间
260

被折叠的 条评论
为什么被折叠?



