【MacOS】MacBook使用本机m1芯片GPU训练的方法(mps替代cuda)

文章讲述了在M1芯片的Mac上,由于架构差异,使用Anaconda配置TensorFlow环境会遇到问题。作者推荐使用Miniforge3替代,它为M1提供了更稳定的环境支持。此外,文章还介绍了如何利用MacM1内置的MPS(MetalPerformanceShaders)进行PyTorch的GPU加速,无需CUDA,只需将设备指定为mps。

记录:
对于tensorflow环境配置,即使替换了M1适配的anaconda,使用苹果官方适配m1的tensorflow安装命令,仍旧出现各种问题,可见现在的M1版anaconda还是存在很大问题。所以在屡次不服气的碰壁下我还是改用了miniforge3…真香!

  • so,建议使用miniforge3管理,miniforge3可以理解成 miniconda/annoconda 的社区版,提供了更稳定的对M1芯片的支持。
    使用miniforge3可成功安装支持m1版的tensorflow及pytorch

MPS介绍

(Mac M1芯片为了追求高性能和节能,在底层设计上使用的是一种叫做arm架构的精简指令集,不同于Intel等常用CPU芯片采用的x86架构完整指令集。所以有些基于x86指令集开发的软件不能直接在Mac M1芯片电脑上使用。)

需要注意的是,使用Mac M1芯片加速 pytorch 不需要安装 cuda后端,因为cuda是适配nvidia的GPU的,Mac M1芯片中的GPU适配的加速后端是mps,在Mac对应操作系统中已经具备,无需单独安装。只需要安装适配的pytorch即可。

MPS使用

去年pytorch官方发布了支持在m1版本的Mac上进行模型加速,所以可以安装gpu版pytorch了(wuhoo~)
首先要具备arm64的Python,以及1.12版本以上的pytorch
mps用法和cuda很像,只是将“cuda”改为“mps”

import torch
print(torch.backends
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值