1.1 Heterogeneous Parallel Computing

本文探讨了自2003年以来计算机处理器的发展趋势,从单核CPU转向多核和多线程架构,强调了并行编程的重要性,特别是GPU在计算密集型应用中的崛起。作者介绍了GPU与CPU在设计哲学上的区别,以及CUDA等编程模型在促进CPU-GPU协同计算中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1 Heterogeneous Parallel Computing

前言

基于单个中央处理器(CPU)的微处理器,如英特尔奔腾系列和AMD皓龙系列的微处理器,二十多年来推动了计算机应用程序的性能快速提高和成本降低。

这些微处理器将每秒千兆浮点运算(GFLOPS,或千兆(每秒10%的浮点运算))带到桌面,每秒将tera浮点运算(TFLOPS,或每秒Tera(1012)浮点运算)带到数据中心。这种对性能改进的不懈推动使应用软件能够提供更多功能,拥有更好的用户界面,并产生更有用的结果。反过来,一旦用户习惯了这些改进,他们就会要求更多的改进,为计算机行业创造一个积极的(良性)循环。

然而,自2003年以来,由于能耗和散热问题,这种驱动器已经放缓,这些问题限制了时钟频率的增加和在单个CPU内每个时钟周期内可以执行的生产活动水平。

从那时起,几乎所有微处理器供应商都转向在每个芯片中使用多个处理单元(称为处理器核心)的模型,以提高处理能力。这个开关对软件开发人员社区[Sutter 2005]产生了巨大影响。

传统上,绝大多数软件应用程序都是作为顺序程序编写的,由处理器执行,其设计是由冯诺伊曼在1945年的开创性报告中[vonNeumann 1945]。这些的执行人类可以循序渐进地完成代码来理解程序。从历史上看,大多数软件开发人员都依靠硬件的进步来提高其在引擎盖下顺序应用程序的速度;随着每一代新处理器的推出,相同的软件运行速度更快。计算机用户也已经习惯了这些程序在每个新一代微处理器上运行得更快的期望。从今天起,这种期望不再有效。顺序程序只会在其中一个处理器内核上运行,从一代到一代不会明显加快。如果没有性能改进,随着新微处理器的引入,应用程序开发人员将不再能够在其软件中引入新的特性和功能,从而减少整个计算机行业的增长机会。

相反,随着微处理器的每次新生成,将继续获得显著性能改进的应用程序软件将是并行程序,其中多个执行线程合作以更快地完成工作。这种新的、急剧升级的并行程序开发的激励被称为并发革命[Sutter 2005]。并行编程的实践绝非新鲜事。几十年来,高性能计算社区一直在开发并行程序。这些程序通常在大规模、昂贵的计算机上运行。只有少数精英应用程序可以证明使用这些昂贵的计算机

Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more
资源下载链接为: https://pan.quark.cn/s/5c50e6120579 在Android移动应用开发中,定位功能扮演着极为关键的角色,尤其是在提供导航、本地搜索等服务时,它能够帮助应用获取用户的位置信息。以“baiduGPS.rar”为例,这是一个基于百度地图API实现定位功能的示例项目,旨在展示如何在Android应用中集成百度地图的GPS定位服务。以下是对该技术的详细阐述。 百度地图API简介 百度地图API是由百度提供的一系列开放接口,开发者可以利用这些接口将百度地图的功能集成到自己的应用中,涵盖地图展示、定位、路径规划等多个方面。借助它,开发者能够开发出满足不同业务需求的定制化地图应用。 Android定位方式 Android系统支持多种定位方式,包括GPS(全球定位系统)和网络定位(通过Wi-Fi及移动网络)。开发者可以根据应用的具体需求选择合适的定位方法。在本示例中,主要采用GPS实现高精度定位。 权限声明 在Android应用中使用定位功能前,必须在Manifest.xml文件中声明相关权限。例如,添加<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />,以获取用户的精确位置信息。 百度地图SDK初始化 集成百度地图API时,需要在应用启动时初始化地图SDK。通常在Application类或Activity的onCreate()方法中调用BMapManager.init(),并设置回调监听器以处理初始化结果。 MapView的创建 在布局文件中添加MapView组件,它是地图显示的基础。通过设置其属性(如mapType、zoomLevel等),可以控制地图的显示效果。 定位服务的管理 使用百度地图API的LocationClient类来管理定位服务
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值