http://acm.hdu.edu.cn/showproblem.php?pid=1059
/*
a[i]保存的是 价值为i 的物品的个数。对于每一个物品,如果个数为1 ,按照0 - 1 背包来做,否则按照混合背包
在混合背包函数中,对物品进行分析,如果i 物品的总价值能装满背包,相当于 i 物品有无数个,可以按照完全背包来做
否则,可以把 i 的个数拆分,一二进制的形式拆分
*/
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
using namespace std;
int a[7],dp[120001],sum;
#define max(a,b) a>b?a:b;
void ZeroOnePack(int n)
{
for(int i = sum; i >= n; i--)
dp[i] = max(dp[i],dp[i-n] + n);
}
void CompletePack(int n)
{
for(int i = n; i <= sum; i++)
dp[i] = max(dp[i],dp[i-n] + n);
}
void MultiplePack(int a,int b)
{
if(a*b > sum)
{
CompletePack(a);
return;
}
int k = 1;
while(k < b)
{
ZeroOnePack(k*a);
b-=k;
k<<=1;
}
ZeroOnePack(a*b);
}
int main()
{
int T = 1;
while(cin>>a[1]>>a[2]>>a[3]>>a[4]>>a[5]>>a[6])
{
if(a[1] + a[2] + a[3] + a[4] + a[5] + a[6] == 0) break;
cout<<"Collection #"<<T++<<":"<<endl;
memset(dp,0,sizeof(dp));
sum = 0;
for(int i = 1; i <= 6; i++)
sum += a[i] * i;
if(sum & 1)
{
cout<<"Can't be divided."<<endl;
cout<<endl;
continue;
}
for(int i = 1; i <= 6; i++)
{
if(a[i] == 1) ZeroOnePack(i);
else if(a[i]) MultiplePack(i,a[i]);
}
if(dp[sum/2] == sum/2) cout<<"Can be divided."<<endl;
else
cout<<"Can't be divided."<<endl;
cout<<endl;
}
return 0;
}