HDU-6265 Master of Phi (数论)

博客介绍了HDU 6265 Master of Phi问题,涉及数论中的Euler's totient函数和狄利克雷卷积。题目要求求解n的所有因子d的φ(d)×dn之和模998244353。解题关键在于理解积性函数的性质,通过将n表示为质因数的乘积,利用Euler's product formula简化计算,最后对每一对质因数pi、qi分别计算并累乘得到答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2017 杭州CCPC HDU 6265 Master of Phi

You are given an integer n. Please output the answer of ∑ d ∣ n φ ( d ) × n d    m o d u l o    998244353. \sum\nolimits_{d|n}φ(d)×\frac{n}{d}\;modulo\;998244353. dnφ(d)×dnmodulo998244353. n is represented in the form of factorization.
φ(n) is Euler’s totient function, and it is defined more formally as the number of integers k in the interval 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1.
For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8. They are all co-prime to 9, but the other three numbers in this interval, 3, 6, and 9 are not, because gcd(9, 3) = gcd(9, 6) = 3 and gcd(9, 9) = 9. Therefore, φ(9) = 6. As another example, φ(1) = 1 since for n = 1 the only
integer in the interval from 1 to n is 1 itself, and gcd(1, 1) = 1.
And there are several formulas for computing φ(n), for example, Euler’s product formula states like:
ϕ ( n ) = n ∏ p ∣ n ( 1 − 1 p ) , \phi(n) = n\prod\nolimits_{p|n}\left(1 - \frac{1}{p}\right), ϕ(n)=npn(1p1),
where the product is all the distinct prime numbers (p in the formula) dividing n.

Input

The first line contains an integer T (1 ≤ T ≤ 20) representing the number of test cases.
For each test case, the first line contains an integer m (1 ≤ m ≤ 20) is the number of prime factors.
The following m lines each contains two integers p i p_i pi and q i q_i qi (2 ≤ p i p_i pi ≤ 108, 1 ≤ q i q_i qi ≤ 108) describing that n contains the factor p i q i p_i^{qi} piqi, in other words, n = ∏ i = 1 m p i q i . n=∏^m_{i=1}p_i^{q_i}. n=i=1mpiqi. It is guaranteed that all pi are primenumbers and different from each other.

Output

For each test case, print the the answer modulo 998244353 in one line.
Example

standard input standard output
2
2
2 1
3 1
2
2 2
3 2
15
168

Explanation

For first test case, n = 2 1 2^1 21 3 1 3^1 31 = 6, and the answer is (φ(1)∗n/1+φ(2)∗n/2+φ(3)∗n/3+φ(6)∗n/6) mod 998244353 = (6 + 3 + 4 + 2) mod 998244353 = 15.

题意

首先给你一个数m,接着是m对数 p i p_i pi, q i q_i q

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值