CBDNet:Toward Convolutional Blind Denoising of Real Photographs

本文介绍了CBDNet,一种用于真实照片盲去噪的深度卷积网络。现有方法通常依赖合成噪声图像,而CBDNet通过结合噪声估计子网络和非盲目去噪子网络,以及一个更接近真实噪声的模型,实现了对真实噪声图像的有效处理。论文提出非对称学习策略,以解决噪声估计误差问题。实验表明,CBDNet在多个数据集上表现出优越的去噪效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Toward Convolutional Blind Denoising of Real Photographs

Shi Guo , Zifei Yan  , Kai Zhang , Wangmeng Zuo , Lei Zhang

Harbin Institute of Technology, Harbin, 150001, China
Department of Computing, The Hong Kong Polytechnic University, Hong Kong

目前深度卷积神经网络去噪方法

  1. 大多数存在的盲去噪的方法都包括两步:噪声估计和非盲目去噪。
  2. 深度卷积神经网络的效果依赖于训练数据,但真实噪声图像和干净图像太少,而合成的噪声图像与真实噪声图像相差太大。
  3. 真实噪声的特征不能充分地被设计的噪声模型所刻画。
  4. 非盲目去噪器(BM3D、FFDNet)对低估噪声等级敏感,而对高估噪声等级表现良好。即在噪声估计网络对噪声图像的噪声估计的噪声等级低于实际噪声等级时,去噪效果不好,但当噪声估计网络对噪声图像的噪声估计的噪声的呢估计高于实际噪声等级时去噪效果良好。

论文的方法是如何借鉴和改进前人的方法

  1. 针对第一点,同样分为两个子网络:噪声估计子网络和非盲目去噪子网络
  2. 针对第二点和第三点,论文选择同时用合成噪声图像和真实噪声图像交替训练网络 。
  3. 针对第三点,论文提出了一个更接近真实噪声的模型,既考虑了信号相关的噪声,又考虑了摄像机的处理流水线中的噪声。
  4. 针对第四点,论文充分利用BM3D对高估计噪声等级表现良好的特性,选择用非对称的方法来学习,即的那个噪声估计网络高估噪声时,给与一个较小的惩罚,而的那个网络低估噪声等级时,给予较大的惩罚。

论文主要贡献

  1. 图像噪声模型在深度卷积神经网络对真实噪声图像去噪中起到关键的作用。论文提出了一个更接近真实噪声的模型,同时考虑了信号相关的噪声和在摄像机的处理流水线中的噪声。
  2. 论文提出了一个CBDNet,由噪声估计子网络和非盲目去噪子网络两部分组成。同时使用非对称学习方法。
  3. 同时采用合成噪声图像和真实噪声图像训练CBDNet。
  4. 在三个数据集上的实验结果表面论文提出的CBDNet相比于前人的方法有突出的效果。

论文的主要方法

噪声模型

信号依赖的噪声:干净图像x,更真实地噪声模型n(x)\sim N(0,\delta (y))\delta ^2(x)=x\cdot \delta ^2_s+\delta ^2_c

n(x)=n_s(x)+n_c,其中n_s是信号依赖的噪声,n_c是静态噪声分量,

当前提供的参考资料主要集中在宏基因组学、微生物数据分析工具以及相关领域的综述文章,并未直接涉及遗传扰动结果预测的子任务分解学习和基准测试的具体内容。然而,可以基于现有资料构建一个合理的解释框架来探讨这一主题。 ### STAMP 子任务分解学习 在处理复杂的生物信息学问题时,如遗传扰动结果预测,采用子任务分解的方法有助于提高模型训练效率并增强泛化能力。通过将整个预测过程划分为多个更易于管理的小任务,每个子任务专注于特定方面或阶段的数据特征提取与模式识别[^1]。例如,在遗传扰动背景下,可能涉及到不同类型的分子机制解析,包括但不限于转录调控网络重建、蛋白质相互作用预测等。 对于这些子任务的学习,通常依赖于监督式机器学习算法,其中标签化的数据集用于指导模型参数调整直至达到最优性能表现。值得注意的是,随着深度神经网络技术的发展,端到端架构也被广泛应用于此类场景之中,能够自动完成从原始输入到最终输出之间的映射关系建立工作[^2]。 ### 基准测试的重要性 为了评估所开发方法的有效性和可靠性,必须实施严格的基准测试程序。这不仅限于内部验证(即利用同一数据集中预留部分作为测试样本),还需要考虑外部独立验证——借助其他实验室公开发布的相似性质数据来进行交叉检验。理想情况下,应当设立一系列评价指标体系,涵盖准确性、敏感度、特异性等多个维度,从而全面衡量各个候选方案的实际应用价值[^3]。 ```python from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # Example of splitting dataset and evaluating model performance using multiple metrics X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model.fit(X_train, y_train) predictions = model.predict(X_test) print(f'Accuracy: {accuracy_score(y_test, predictions)}') print(f'Precision: {precision_score(y_test, predictions)}') print(f'Recall: {recall_score(y_test, predictions)}') print(f'F1 Score: {f1_score(y_test, predictions)}') scores = cross_val_score(model, X, y, cv=5) print(f'Cross-validation scores: {scores}') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值