【NO.27】LeetCode HOT 100—62. 不同路径

文章介绍了如何使用动态规划方法解决机器人在给定网格中从左上角到右下角的不同路径问题,通过构建状态转移方程求解,给出示例并分析了时间复杂度和空间复杂度。

62. 不同路径

62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

在这里插入图片描述

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 10^9

解题

方法:动态规划

动态规划,令 dp[i][j]表示 从 (0,0) 到达 (i, j) 最多路径。basecase就是第一行,第一列时,dp[0][j] = dp[i][0] = 1

由于我们每一步只能从向下或者向右移动一步,因此要想走到 (i,j),如果向下走一步,那么会从 (i−1,j) 走过来;如果向右走一步,那么会从 (i,j−1) 走过来。因此我们可以写出动态规划转移方程: dp[i][j] = dp[i-1][j] + dp[i][j-1],

// 时间复杂度,空间复杂度都为O(mn)
class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        // 填充边界(分析题意的值的特殊值)
        for (int i = 0 ; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n; j++) {
            dp[0][j] = 1;
        }
        // 填充数组的其他位置
        for (int i = 1 ; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        
        return dp[m-1][n-1];
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悬浮海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值