springai+pgvector+ollama实现rag

        首先在ollama中安装mofanke/dmeta-embedding-zh:latest。执行ollama run mofanke/dmeta-embedding-zh 。实现将文本转化为向量数据

        接着安装pgvector(建议使用pgadmin4作为可视化工具,用navicate会出现表不显示的问题)

        安装好需要的软件后我们开始编码操作。

1:在pom文件中加入:

        <!--用于连接pgsql-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-jdbc</artifactId>
        </dependency>
        <!--用于使用pgvector来操作向量数据库-->
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-pgvector-store-spring-boot-starter</artifactId>
        </dependency>
        <!--pdf解析-->
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-pdf-document-reader</artifactId>
        </dependency>
        <!--文档解析l-->
        <dependency>
            <groupId>org.springframework.ai</groupId>
            <artifactId>spring-ai-tika-document-reader</artifactId>
        </dependency>

2:在yml中配置:

spring:
  datasource:
    url: jdbc:postgresql://127.0.0.1:5432/postgres
    username: postgres
    password: password
  ai:
    vectorstore:
      pgvector:
        dimensions: 768   #不同的embeddingmodel对应的值
    ollama:
      base-url: http://127.0.0.1:11434
      chat:
        enabled: true
        options:
          model: qwen2:7b
      embedding:
        model: mofanke/dmeta-embedding-zh

3:在controller中加入:

   /**
     * 嵌入文件
     *
     * @param file 待嵌入的文件
     * @return 是否成功
     */
    @SneakyThrows
    @PostMapping("embedding")
    public List<Document> embedding(@RequestParam MultipartFile file) {

        // 从IO流中读取文件
        TikaDocumentReader tikaDocumentReader = new TikaDocumentReader(new InputStreamResource(file.getInputStream()));
        // 将文本内容划分成更小的块
        List<Document> splitDocuments = new TokenTextSplitter()
                .apply(tikaDocumentReader.read());
        // 存入向量数据库,这个过程会自动调用embeddingModel,将文本变成向量再存入。
        vector.add(splitDocuments);
        return splitDocuments;
    }

调用上方的接口可以将文档转为向量数据存入到pgvector中

4:请求聊天,先根据聊天内容通过pgvector获取对应的数据,并将结果丢到qwen2模型中进行数据分析并返回结果

/**
     * 获取prompt
     *
     * @param message 提问内容
     * @param context 上下文
     * @return prompt
     */
    private String getChatPrompt2String(String message, String context) {
        String promptText = """
				请用仅用以下内容回答"%s" ,输出结果仅在以下内容中,输出内容仅以下内容,不需要其他描述词:
				%s
				""";
        return String.format(promptText, message, context);
    }

    @GetMapping("chatToPgVector")
    public String chatToPgVector(String message) {

        // 1. 定义提示词模板,question_answer_context会被替换成向量数据库中查询到的文档。
        String promptWithContext = """
                你是一个代码程序,你需要在文本中获取信息并输出成json格式的数据,下面是上下文信息
                ---------------------
                {question_answer_context}
                ---------------------
                给定的上下文和提供的历史信息,而不是事先的知识,回复用户的意见。如果答案不在上下文中,告诉用户你不能回答这个问题。
                """;
        //查询获取文档信息
        List<Document> documents = vector.similaritySearch(message,"test_store");
        //提取文本内容
        String content = documents.stream()
                .map(Document::getContent)
                .collect(Collectors.joining("\n"));
        System.out.println(content);
        //封装prompt并调用大模型
        String chatResponse = ollamaChatModel.call(getChatPrompt2String(message, content));
        return chatResponse;
   /*     return ChatClient.create(ollamaChatModel).prompt()
                .user(message)
                // 2. QuestionAnswerAdvisor会在运行时替换模板中的占位符`question_answer_context`,替换成向量数据库中查询到的文档。此时的query=用户的提问+替换完的提示词模板;
                .advisors(new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults(), promptWithContext))
                .call().content();*/
    }

至此一个简单的rag搜索增强demo就完成了。接下来我们来看看PgVectorStore为我们做了什么

//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by FernFlower decompiler)
//

package org.springframework.ai.vectorstore;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.pgvector.PGvector;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.UUID;
import java.util.stream.IntStream;
import org.postgresql.util.PGobject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.document.Document;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.vectorstore.filter.FilterExpressionConverter;
import org.springframework.ai.vectorstore.filter.converter.PgVectorFilterExpressionConverter;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.jdbc.core.BatchPreparedStatementSetter;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.jdbc.core.StatementCreatorUtils;
import org.springframework.lang.Nullable;
import org.springframework.util.StringUtils;

public class PgVectorStore implements VectorStore, InitializingBean {
    private static final Logger logger = LoggerFactory.getLogger(PgVectorStore.class);
    public static final int OPENAI_EMBEDDING_DIMENSION_SIZE = 1536;
    public static final int INVALID_EMBEDDING_DIMENSION = -1;
    public static final String VECTOR_TABLE_NAME = "vector_store";
    public static final String VECTOR_INDEX_NAME = "spring_ai_vector_index";
    public final FilterExpressionConverter filterExpressionConverter;
    private final JdbcTemplate jdbcTemplate;
    private final EmbeddingModel embeddingModel;
    private int dimensions;
    private PgDistanceType distanceType;
    private ObjectMapper objectMapper;
    private boolean removeExistingVectorStoreTable;
    private PgIndexType createIndexMethod;
    private final boolean initializeSchema;

    public PgVectorStore(JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel) {
        this(jdbcTemplate, embeddingModel, -1, PgVectorStore.PgDistanceType.COSINE_DISTANCE, false, PgVectorStore.PgIndexType.NONE, false);
    }

    public PgVectorStore(JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel, int dimensions) {
        this(jdbcTemplate, embeddingModel, dimensions, PgVectorStore.PgDistanceType.COSINE_DISTANCE, false, PgVectorStore.PgIndexType.NONE, false);
    }

    public PgVectorStore(JdbcTemplate jdbcTemplate, EmbeddingModel emb
### SpringAIOllama集成的技术文档和使用教程 #### 集成概述 SpringAI提供了多种方式来集成不同的嵌入模型,其中包括Ollama Embeddings。这使得开发者能够快速地将自然语言处理能力加入到自己的应用中去[^2]。 #### 支持的Embedding模型列表 为了满足不同场景下的需求,SpringAI已经集成了多个流行的嵌入模型服务提供商的服务接口,具体来说有: - **Azure OpenAI** - **Ollama** - **Transformers (ONNX)** - **PostgresML** - **Bedrock Cohere** - **Bedrock Titan** - **VertexAI PaLM2** - **Mistral AI** 这些模型可以被用来创建高效的文本向量表示,进而应用于诸如语义相似度计算、分类等多种NLP任务之中。 #### 实现细节说明 当考虑在一个Spring Boot项目里引入SpringAI以及Ollama时,虽然官方给出了大致指导方针,但是实际操作过程中仍需依据项目的具体情况调整配置参数或是扩展功能模块以适应特定业务逻辑的要求[^1]。 对于想要利用`ollama:qwen:7b`配合pgvector构建RAG(检索增强生成)系统的团队而言,则需要注意整个ETL过程的设计——即如何有效地完成从原始资料获取直至最终入库保存这一系列动作,并确保每一步都能稳定运行[^4]。 此外,在线部分涉及到了用户交互环节的设计,比如接收查询请求之后怎样精准定位所需信息并返回给前端展示等问题也需要仔细规划[^5]。 ```java // 示例代码片段:定义一个简单的DocumentReader接口实现类 public class SimpleFileDocumentReader implements DocumentReader { private final String filePath; public SimpleFileDocumentReader(String filePath){ this.filePath = filePath; } @Override public List<Document> get(){ try { Path path = Paths.get(filePath); Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8); return lines.map(line -> new Document(line)).collect(Collectors.toList()); } catch (IOException e) { throw new RuntimeException(e); } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麦田小猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值