tf.random_normal与tf.truncated_normal的区别
-
定义
The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than 2 standard deviations from the mean are dropped and re-picked. -
与tf.random_normal的不同之处
tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)outputs random values from a normal distribution.
tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)outputs random values from a truncated normal distribution.

- 价值在于:
The point for using truncated normal is to overcome saturation of tome functions like sigmoid (where if the value is too big/small, the neuron stops learning).
即为了克服神经网络在利用某些激活函数学习时,例如sidmoid,会在值过大活过小时停止学习的缺点。

本文详细对比了TensorFlow中tf.random_normal与tf.truncated_normal两种随机数生成方式的差异,阐述了使用截断正态分布生成随机数如何避免神经网络训练中的饱和问题,尤其是在使用如sigmoid这样的激活函数时。
1万+

被折叠的 条评论
为什么被折叠?



