Given a 2D integer matrix M representing the gray scale of an image, you need to design a smoother to make the gray scale of each cell becomes the average gray scale (rounding down) of all the 8 surrounding cells and itself. If a cell has less than 8 surrounding cells, then use as many as you can.
Example 1:
Input: [[1,1,1], [1,0,1], [1,1,1]] Output: [[0, 0, 0], [0, 0, 0], [0, 0, 0]] Explanation: For the point (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0 For the point (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0 For the point (1,1): floor(8/9) = floor(0.88888889) = 0
Note:
- The value in the given matrix is in the range of [0, 255].
- The length and width of the given matrix are in the range of [1, 150].
题意:给定一个二维矩阵,让你把每个元素求取其与周围八个元素的平均值,不足八个元素的按最大数量求取。
思路:
1.做一个周围元素的数组x[]和y[],逐个遍历矩阵求取平均值即可。
参考代码:
class Solution {
public:
int x[9]={-1,-1,-1,0,0,0,1,1,1};
int y[9]={-1,0,1,-1,0,1,-1,0,1};
vector<vector<int>> imageSmoother(vector<vector<int>>& M) {
int m=M.size(),n=M[0].size();
vector<vector<int>> ans(m);
for(int i=0;i<m;++i){
ans[i].resize(n);
for(int j=0;j<n;++j){
double t=0;
int cnt=0;
for(int k=0;k<9;++k){
if(i+x[k]>=0&&i+x[k]<m&&j+y[k]>=0&&j+y[k]<n){
t+=M[i+x[k]][j+y[k]];
cnt++;
}
}
ans[i][j]=floor(t/cnt);
}
}
return ans;
}
};