A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element.
Now given an M x N
matrix, return True
if and only if the matrix is Toeplitz.
Example 1:
Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] Output: True Explanation: 1234 5123 9512 In the above grid, the diagonals are "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]", and in each diagonal all elements are the same, so the answer is True.
Example 2:
Input: matrix = [[1,2],[2,2]] Output: False Explanation: The diagonal "[1, 2]" has different elements.
Note:
matrix
will be a 2D array of integers.matrix
will have a number of rows and columns in range[1, 20]
.matrix[i][j]
will be integers in range[0, 99]
.
思路:
1.题意中Toep矩阵要求每一条主对角线上的元素都要相同才返回真。因此从右上角开始,逐对角线遍历判断,第一轮循环判断上三角,第二轮循环判断下三角。
参考代码:
class Solution {
public:
bool isToeplitzMatrix(vector<vector<int>>& matrix) {
int row=matrix.size(),column=matrix[0].size();
for(int k=column-1;k>0;--k){
for(int i=0,j=k;i<row&&j<column;++i,++j){
if(matrix[i][j]!=matrix[0][k])
return false;
}
}
for(int k=0;k<row;++k){
for(int i=k,j=0;i<row&&j<column;++i,++j){
if(matrix[i][j]!=matrix[k][0])
return false;
}
}
return true;
}
};
思路2:两轮循环遍历矩阵,从下标(1,1)开始,判断matrix[i][j]与matrix[i-1][j-1]是否相等,不等返回false。
参考代码:
class Solution {
public:
bool isToeplitzMatrix(vector<vector<int>>& matrix) {
int row=matrix.size(),column=matrix[0].size();
for(int i=1;i<row;++i){
for(int j=1;j<column;++j){
if(matrix[i][j]!=matrix[i-1][j-1])
return false;
}
}
return true;
}
};