import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
# 把原始图像转换为图像张量,C*W*H 然后对数据进行归一化,类比正态分布转化为标准形式
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,),(0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True,transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True,batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True,transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784) # 把整个图片变成一个行向量,-1是自动获取mini_batch
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x) #最后一层不用非线性变换
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
outputs = model(inputs)
loss = criterion(outputs, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d]loss:%.3f' % (epoch+1, batch_idx+1, running_loss/300))
def Test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images,labels =data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %%' % (100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
Test()
09多分类问题
MNIST数据集上的多分类任务
于 2024-08-02 19:47:01 首次发布
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理
3881

被折叠的 条评论
为什么被折叠?



