大语言模型的Scaling Law【Power Low】

NLP-大语言模型学习系列目录

一、注意力机制基础——RNN,Seq2Seq等基础知识
二、注意力机制【Self-Attention,自注意力模型】
三、Transformer图文详解【Attention is all you need】
四、大语言模型的Scaling Law【Power Low】


一、什么是 Scaling Law

Scaling Law(缩放法则)是人工智能和机器学习中一类理论,它描述了随着模型规模(例如参数数量)、训练数据量、计算资源的增加,模型性能如何提升的规律。简单来说,Scaling Law 研究的是模型性能与模型规模之间的关系

定义【Scaling Law】1

在生成模型中被广泛观察到的现象,对于计算量C,模型参数量N和数据大小D,当不受另外两个因素影响时,模型的性能与每个因素都呈幂律关系:

  • 性能 ∝ N α \propto N^{\alpha} Nα
  • 性能 ∝ D β \propto D^{\beta} Dβ
  • 性能 ∝ C γ \propto C^{\gamma} Cγ

这些公式中的 α、β、γ 是对应维度的缩放指数。通常模型性能可以用Test Loss来表示,Loss越小说明模型性能越好。

截屏2024-10-19 10.54.28

Scaling Law背后的基本思想是:模型的性能可以通过简单的扩展(例如增加模型参数、训练数据或计算资源)来不断提升,并且这种提升往往遵循一定的幂律关系。通过研究这种关系,研究者可以预测模型在不同规模下的性能表现,指导大模型的设计和训练。

二、 Scaling Law的应用

Scaling Law总结出来的一个规律是:
C ≈ 6 N D C\approx6ND C6ND

其中C是计算量,N是参数量,D是训练数据量。举个例子:

假设一个模型有 10亿个参数( N = 1 0 9 N=10^9 N=109 ), 并且训练数据集的规模是 D = 1 0 12 \mathrm{D}=10^{12} D=1012 (1万亿个 token).使用公式 C = 6ND, 总的计算量就是:

C = 6 × 1 0 9 × 1 0 12 = 6 × 1 0 21 F L O P s C=6 \times 10^9 \times 10^{12}=6 \times 10^{21} \mathrm{FLOPs} C=6×109×1012=6×1021FLOPs
这表明要训练这个模型, 大约需要 6 × 1 0 21 6\times 10^{21} 6×1021 次浮点运算。

截屏2024-09-25 19.46.14
这个规律有什么用呢?通过前面的Scaling Law我们知道,训练大模型时,增加模型的参数量或者训练的数据量,模型性能会得到提升。但是我们并不能无止境的增加,因为现实训练模型收到计算量的制约,训练一个语言大模型是很费钱的。所以当给定一个计算量budget,我们怎么分配N和D得到一个最好的模型呢

(1)最佳模型参数,数据量求解方法

上面的问题可以建模为如下的优化问题:

N o p t ( C ) , D o p t ( C ) = argmin ⁡ N , D  s.t. FLOPs ( N , D ) = C L ( N , D ) , L ^ ( N , D ) ≜ E + A N α + B D β . N_{opt}(C),D_{opt}(C)=\underset{N,D\text{ s.t. FLOPs}(N,D)=C}{\operatorname*{argmin}}L(N,D),\\ \hat{L}(N,D)\triangleq E+\frac A{N^\alpha}+\frac B{D^\beta}. Nopt(C),Dopt(C)=N,D s.t. FLOPs(N,D)=CargminL(N,D),L^(N,D)E+NαA+DβB.

这个多变量问题怎么解呢?主要有三种方法:

  1. 固定模型大小,改变训练数据
  2. 固定计算量,改变模型大小
  3. 拟合幂律曲线

截屏2024-09-26 10.00.51

根据上表的结果,得出a=0.5,b=0.5

截屏2024-09-26 10.33.08

image-20240926103233403根据图3右边两图所得到的点,向外延伸,可以得到给定计算量C最佳的N、D.

截屏2024-09-26 10.35.43

image-20240926103557968

(2)LLaMA3.1中的Scaling Law

如下图所示,是LLaMA3.1中的Scaling Law,LLaMA3.1发布了3个模型,分别是8B,70B,405B.这个405B是怎么定下来的呢,难道是领导拍脑袋想出来的吗(国内可能是hh).显然他们做了实验,先在小数据和小模型上进行实验(左图),然后根据实验结果画出Scaling Law曲线,找到对应计算量的最优模型大小和最优训练数据量。
截屏2024-09-26 10.42.58

(3)计算实例【根据计算量和数据量,求最佳模型大小】

例:

  • 假设你有1000张H100显卡,并且可以用6个月。
  • 假设你有10T的数据。
  • 那么你应该训练多大的模型?

image-20240927145027916

另一种更快的估计方法:

image-20240927145042459

三、未来挑战

尽管 Scaling Law 提供了重要的理论指导,仍然存在一些挑战:

  • 计算成本问题:大规模扩展模型的参数和训练数据通常需要极高的计算成本。虽然 Scaling Law 提供了理论依据,但大规模训练的实际成本可能难以承受。
  • 数据质量:Scaling Law 假设数据量的增加会提升模型性能,但在实际应用中,数据的质量同样至关重要,低质量数据可能会导致性能下降甚至模型偏差。
  • 性能饱和:Scaling Law 研究表明,性能提升并不是无限的,通常会在某个点达到瓶颈。因此,研究者需要找到其他方法(如新架构、知识蒸馏)来进一步提高性能。

参考资料


  1. Scaling Laws for Neural Language Models【paper】 ↩︎

### 大模型 Scaling Law 的研究与应用 大模型的 Scaling Law 是指模型性能与参数量、数据量以及计算资源之间的关系。这一规律为大模型的设计和优化提供了重要的理论依据,同时也推动了更高效、可持续的 AI 研发和应用[^1]。 #### 1. Scaling Law 的定义与核心内容 Scaling Law 描述了模型性能随参数量增长而变化的规律,同时考虑了数据量和计算资源的影响。研究表明,随着模型参数量的增加,模型性能通常会提升,但提升幅度会逐渐减弱,即存在所谓的“边际效益递减”现象[^2]。此外,数据量的增加对模型性能的提升也有一定限制,超过某个阈值后效果趋缓[^3]。 #### 2. 公式与数学推导 在 Scaling Law 的研究中,计算量、模型大小和数据大小之间存在一定的数学关系。具体而言,确定模型尺寸后,Scaling Law 提供的是最优的数据供给,或者说是“至少”的数据量。实际上,只要观察到性能指标仍在增长,就可以持续增加训练数据[^4]。以下是一个简化的公式表示: \[ P \propto N^{\alpha} D^{\beta} C^{\gamma} \] 其中: - \( P \) 表示模型性能; - \( N \) 表示模型参数量; - \( D \) 表示训练数据量; - \( C \) 表示计算资源; - \( \alpha, \beta, \gamma \) 是经验常数,分别表示参数量、数据量和计算资源对性能的影响程度[^4]。 #### 3. 应用案例 Scaling Law 在实际应用中已经得到了广泛验证。例如,在自然语言处理领域,Transformer 架构成为主流模型,其性能随着参数量和数据量的增加而显著提升。此外,在图像识别和语音识别等任务中,大规模模型也展现出更强的泛化能力和更高的准确性[^3]。 #### 4. 未来发展趋势与挑战 尽管 Scaling Law 为大模型的研究提供了重要指导,但在实际应用中仍面临诸多挑战。例如,计算资源需求巨大、训练数据获取困难、模型优化难度大等问题亟待解决。未来的发展趋势包括进一步扩大模型规模、提升训练效率、增强模型泛化能力以及提高模型的安全性和可解释性[^3]。 ```python # 示例代码:简单模拟 Scaling Law 的性能增长 import numpy as np def scaling_law(N, D, C, alpha=0.5, beta=0.3, gamma=0.2): return N**alpha * D**beta * C**gamma # 参数设置 N = 1e9 # 模型参数量 D = 1e6 # 训练数据量 C = 1e4 # 计算资源 # 计算性能 performance = scaling_law(N, D, C) print(f"模型性能: {performance:.2f}") ``` ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值