题目:http://acm.hdu.edu.cn/showproblem.php?pid=3416
分析:刚开始想着是不是先将所有的最短路找出来,再根据重边情况求最大独立集,感觉这太复杂了,而且复杂度也不允许,在求出最短路径之后,数一数能构成多少无重边的最短路径不就行了,编码时发现dfs数路径的时候有点最大流Dinc算法的感觉。
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
#define MAX_NODE 1005
#define MAX_EDGE 100005
int N, M, S, T, dis[MAX_NODE], nex[MAX_NODE];
struct Edge{
int from, to, len;
} edge[MAX_EDGE];
vector<int> in[MAX_NODE], out[MAX_NODE];
queue<int> Q;
bool inq[MAX_NODE];
void init()
{
for(int i = 1; i <= N; ++i){
in[i].clear();
out[i].clear();
}
while(!Q.empty()) Q.pop();
memset(inq+1, false, N);
memset(nex+1, 0x00, N << 2);
memset(dis+1, 0x7F, N << 2);
}
void build()
{
scanf("%d%d", &N, &M);
init();
for(int i = 0, k = 0; i < M; ++i){
scanf("%d%d%d", &edge[k].from, &edge[k].to, &edge[k].len);
if(edge[k].from == edge[k].to) continue;
in[edge[k].to].push_back(k);
out[edge[k].from].push_back(k);
++k;
}
scanf("%d%d", &S, &T);
}
bool spfa()
{
dis[T] = 0;
Q.push(T);
while(!Q.empty()){
int x = Q.front(); Q.pop(); inq[x] = false;
vector<int>& v = in[x];
for(int i = v.size() - 1; i > -1; --i){
int e = v[i], y = edge[e].from, d = edge[e].len;
if(dis[y] > dis[x] + d){
dis[y] = dis[x] + d;
if(!inq[y]){
Q.push(y);
inq[y] = true;
}
}
}
}
return dis[S] < 0x7F7F7F7F;
}
bool dfs(int x)
{
if(x == T) return true;
bool found = false;
vector<int>& v = out[x];
for(int& i = nex[x]; i < v.size() && !found; ++i){
int e = v[i], y = edge[e].to, d = edge[e].len;
if(dis[x] == dis[y] + d && dfs(y)) found = true;
}
return found;
}
int countPath()
{
int cnt = 0;
while(dfs(S)) ++cnt;
return cnt;
}
int main()
{
int kase;
for(scanf("%d", &kase); kase--; ){
build();
if(spfa()) printf("%d\n", countPath());
else puts("0");
}
return 0;
}