Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。
Dijkstra算法的迭代过程:
#include
#include
#include
#define X 10000
#define VertexNum 7 //实际上共有六个顶点(1---6)
#define EdgeNum 9
int Graph[VertexNum][VertexNum] =
//0 1 2 3 4 5 6
{ X, X, X, X, X, X, X, //0
X, X, 6, 3, X, X, X, //1
X, X, X, X, 5, X, X, //2
X, X, 2, X, 3, 4, X, //3
X, X, X, X, X, X, 3, //4
X, X, X, X, 2, X, 5, //5
X, X, X, X, X, X, X //6
};
int Visited[VertexNum];
in